文章标题:基于改进高斯粒子滤波的船舶非线性状态估计
文章作者:林孝工, 聂岚容, 聂君
关 键 字:动力定位;非线性状态估计;标准粒子滤波;IGPF;CKF
文章摘要:针对标准粒子滤波的粒子贫化问题,提出一种基于改进高斯粒子滤波(Improved Gaussian Particle Filter,IGPF)的船舶非线性状态估计器。首先基于序贯重要性采样(Sequential Important Sampling,SIS)的理论框架,给出标准粒子滤波(Particle Filter,PF)算法,然后在此基础上用高斯分布来作为重要性分布给出高斯粒子滤波(Gaussian Particle Filter,GPF),并将Unscented卡尔曼滤波用于重要性密度函数形成IGPF,应用于动力定位船的状态估计。仿真结果表明,基于IGPF的非线性状态估计器能有效避免粒子贫化、估计船舶状态,并对观测野值有一定的鲁棒性。