文章标题:基于改进YOLOv7声光融合水下目标检测方法
文章作者:葛慧林, 戴跃伟, 朱志宇, 王彪
关 键 字:改进YOLOv7;水下目标检测;声光融合;光学图像;声呐图像
文章摘要:多变的光照条件及天气状况将会严重影响水下光学图像的成像质量,为提升水下目标检测的稳定性及检测精度,基于深度神经网络模型,对结合光学图像和声呐图形的多模态方法进行研究。首先,针对实时神经网络检测器架构YOLOv7,通过改进该检测器,使其适用于多模态输入。其次,为了有效地结合来自不同模态的影响特征,提出全新的融合模型YOLOv7-Fusion,并通过引入CE-Fusion模块,实现融合效率和准确度的提升。最后,为了解决数据集缺少的问题,利用快速风格和图像处理算法转化的方法,生成人工数据集。所设计的算法及模型目标识别准确率为0.995,具有较高检测精度;Fps为43.4,具有较高处理效率。该模型可支持真实应用,适用于不同类型的水下场景。