《舰船科学技术》

文章标题:基于改进YOLOv5的船体焊缝缺陷自动检测方法

文章作者:杜玉红1, 叶萧然1, 侯守明2
关 键 字:YOLOv5;船体焊缝;缺陷检测;网络优化;灰度变换;图像采集
文章摘要:为解决采用人工手段检测船体焊缝速度慢、准确度低的问题,提出基于改进YOLOv5的船体焊缝缺陷自动检测方法。利用相机采集船体焊缝图像,使用正弦灰度变换对焊缝图像进行处理,避免焊缝图像特征消失,提高正常焊缝与存在缺陷焊缝间的对比度,将处理后焊缝图像作为YOLOv5网络的输入样本,经网络Backbone、Neck以及Head部分处理,输出焊缝缺陷自动检测结果,并使用GhostNet替换YOLOv5网络主体部分的一般卷积层(CBS),降低网络进行船体焊缝缺陷检测的计算量和资源消耗量。实验结果表明,采用正弦灰度变换后的图像更加清晰,可突出显示焊缝缺陷特征,提升焊缝缺陷检测结果精准。改进后网络训练损失函数为0.15,平均准确率为98%,可实现不同焊缝位置的缺陷检测。