对于潜艇外壳等外压容器来说,满足稳定性要求至关重要。本文利用Matlab编写改进粒子群算法优化程序,利用Ansys的Apdl语言完成了环肋圆柱壳的参数化建模,以圆柱壳厚度、肋骨尺寸和肋距作为离散设计变量,以稳定性要求作为约束条件,构造了合适的惩罚函数,以质量最轻作为设计目标,实现了基于BP神经网络和粒子群算法的环肋圆柱壳优化设计。在优化过程中,首先采用拉丁超立方体抽样完成了样本点的选取,然后对样本点进行有限元分析,根据有限元分析结果构建BP神经网络代理模型,并探讨了样本点数量对代理模型预测精度的影响,最后采用改进粒子群算法对代理模型进行优化。优化结果表明,对于需要考虑离散变量和复杂非线性约束的结构优化问题,采用BP神经网络和粒子群算法联合优化的方法能够节省大量计算时间,并达到理想的优化效果。
For the external pressure vessel such as submarine shell, it is important to meet stability requirement. This paper wrote an improved particle swarm optimization(PSO), in which the penalty function is employed to transform nonlinear constraint optimization to unconstrained optimization. Then based on Matlab and Ansys, BP neural network and particle swarm optimization were applied to optimize ring-stiffened cylindrical shell, with the stability as constraint, with the total mass of stiffened cylindrical as objective function. And the optimal variables are shell thickness, frame dimensions and frame spacing. In the process of optimization, latin hypercube sampling method are used to choose sample points, and the finite element analysis was carried out on the sample points. With the analysis result, BP neural network can be built. Then this paper discuss the sample's influence on prediction accuracy of neural network. Finally, this paper optimize the neural network with improved particle swarm optimization method. Optimum results shows that the validity of the proposed approach is examined, and this method can be used to solve nonlinear constraints discrete structural optimization problems. Use BP-PSO optimization algorithm can get good optimization result and save lots of time.
2016,38(3): 5-9 收稿日期:2015-08-18
DOI:10.3404/j.issn.1672-7619.2016.03.002
分类号:TP273
基金项目:国家自然科学基金资助项目(51279102)
作者简介:张宇(1993-),男,硕士研究生,研究方向为船舶结构强度分析。
参考文献:
[1] 陈美霞, 金宝燕, 陈乐佳. 基于APDL语言的加筋圆柱壳的静动态性能优化设计[J]. 舰船科学技术, 2008, 30(3):64-68. CHEN Mei-xia, JIN Bao-yan, CHEN Le-jia. Optimization design of static and dynamic characteristics of stiffened cylindrical shells based on APDL[J]. Ship Science and Technology, 2008, 30(3):64-68.
[2] 龙连春, 赵斌, 陈兴华. 薄壁加筋圆柱壳稳定性分析及优化[J]. 北京工业大学学报, 2012, 38(7):997-1003. LONG Lian-chun, ZHAO Bin, CHEN Xing-hua. Buckling analysis and optimization of thin-walled stiffened cylindrical shell[J]. Journal of Beijing University of Technology, 2012, 38(7):997-1003.
[3] 王存福, 赵敏, 葛彤. 考虑失稳模式的环肋圆柱壳结构优化设计[J]. 上海交通大学学报, 2014, 48(1):56-63. WANG Cun-fu, ZHAO Min, GE Tong. Optimal design of ring-stiffened cylindrical shell considering instability mode[J]. Journal of Shanghai Jiaotong University, 2014, 48(1):56-63.
[4] PEREZ R E, BEHDINAN K. Particle swarm approach for structural design optimization[J]. Computers & Structures, 2007, 85(19/20):1579-1588.
[5] LUH G C, Lin C Y. Optimal design of truss-structures using particle swarm optimization[J]. Computers & Structures, 2011, 89(23/24):2221-2232.
[6] 何小二, 王德禹, 夏利娟. 基于粒子群算法的多用途船结构优化[J]. 上海交通大学学报, 2013, 47(6):928-931. HE Xiao-er, WANG De-yu, XIA Li-juan. Optimization of multipurpose ship structures based on particle swarm approach[J]. Journal of Shanghai Jiaotong University, 2013, 47(6):928-931.
[7] 郭海丁, 路志峰. 基于BP神经网络和遗传算法的结构优化设计[J]. 航空动力学报, 2003, 18(2):216-220. GUO Hai-ding, LU Zhi-feng. Structure design optimization based on BP-neural networks and genetic algorithms[J]. Journal of Aerospace Power, 2003, 180(2):216-220.
[8] 王建, 庞永杰, 程妍雪, 等. 近似模型在非均匀环肋圆柱耐压壳优化中的应用研究[J]. 船舶力学, 2014, 18(11):1331-1338. WANG Jian, PANG Yong-jie, CHENG Yan-xue, et al. Application of approximation models to optimize the design of the non-uniform ring-frames pressure shell[J]. Journal of Ship Mechanics, 2014, 18(11):1331-1338.
[9] 王吉权. BP神经网络的理论及其在农业机械化中的应用研究[D]. 沈阳:沈阳农业大学, 2011.
[10] 敖永才, 师奕兵, 张伟, 等. 自适应惯性权重的改进粒子群算法[J]. 电子科技大学学报, 2014, 43(6):874-880. AO Yong-cai, SHI Yi-bing, ZHANG Wei, et al. Improved particle swarm optimization with adaptive inertia weight[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6):874-880.
[11] 陈果. 神经网络模型的预测精度影响因素分析及其优化[J]. 模式识别与人工智能, 2005, 18(5):528-534. CHEN Guo. Analysis of influence factors for forecasting precision of artificial neural network model and its optimizing[J]. Pattern Recognition and Artificial Intelligence, 2005, 18(5):528-534.