压载水管理公约D2对压载水中颗粒物粒径范围及含量做出了明确规定。为满足此规定,水力旋流器逐步开始应用于船舶压载水处理系统中。为了提高水力旋流器的分离效率,通过改变水力旋流器的入口结构对水力旋流器进行优化,即将入口结构设计为阿基米德螺线形入口来增加流体转动速度,降低能量消耗,从而提高分离效率。应用Fluent软件,结合雷诺应力模型(RSM)和混合多相流(Mixture)分析方法,对优化前、后的水力旋流器进行固-液两相流数值模拟。模拟内容包括水力旋流器内的速度分布、固相体积分数分布以及分离效率等。通过对比2种模型的模拟结果,说明优化的水力旋流器内部的流场速度以及分离效率均有一定的提高,达到了优化目的。
The ballast water management standard D2 established by IMO has made clear rules for the range of particles size and content in the ballast water. In order to meet the rules, the hydrocyclone has begun to be widely applied in treatment of ship's ballast water. However, in order to improve the separation property of the hydrocyclone, optimize the hydrocyclone by changing its entry structure. The cyclone entry structure is designed as Archimedes spiral entrance to increase fluid rotational speed, reduce the energy consumption and finally improve the separation efficiency. Using Fluent software and combining with the Reynolds stress model and the mixture multiphase model to simulate the solid-liquid multiphase of the two structures of Archimedes entrance and tangential entrance hydrocyclone. The simulation includes the fluid field distribution and solid volume fraction distribution inside the hydrocyclone and the separation efficiency. The simulation results show that:compare to the tangential entrance, the tangential velocity and separation efficiency both increased, achieved the goal of optimization.
2016,38(3): 73-78 收稿日期:2015-09-08
DOI:10.3404/j.issn.1672-7619.2016.03.016
分类号:U664.9+2
基金项目:2013江苏省产业化资助项目(BA2013065)
作者简介:孟梦(1990-),女,硕士研究生,主要研究方向为船舶压载水处理系统的设计、优化与仿真。
参考文献:
[1] 王军, 应胜, 陈宁. 基于压载水的除沙旋流器设计及实验研究[J]. 江苏科技大学学报(自然科学版), 2014, 28(6):552-556. WANG Jun, YING Sheng, CHEN Ning. Design and experimental study of hydrocyclone for removing sand from ballast water[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2014, 28(6):552-556.
[2] 王文成, 龚帆, 郑羽, 等. 船舶压载水处理综述[J]. 上海船舶运输科学研究所学报, 2013, 36(4):11-14. WANG Wen-cheng, GONG Fan, ZHENG Yu, et al. A review of ship ballast water treatment[J]. Journal of Shanghai Ship and Shipping Research Institute, 2013, 36(4):11-14.
[3] 闫月娟. 井下旋流除砂器内固液两相流动特性研究[D]. 大庆:东北石油大学, 2014. YAN Yue-juan. Research on solid-liquid flow character in downhole hydrocyclone desander[D]. Daqing:Northeast Petroleum University, 2014.
[4] 曹雨平, 姜临田. 水力旋流器的研究现状和发展趋势[J]. 工业水处理, 2015, 35(2):11-14. CAO Yu-ping, JIANG Lin-tian. Research status and development trend on hydrocyclone[J]. Industrial Water Treatment, 2015, 35(2):11-14.
[5] 龚伟安. 水力旋流器的蜗壳设计理论与计算[J]. 石油机械, 1992, 20(12):1-6.
[6] ZHANG J, YOU X Y, NIU Z G. Numerical simulation of solid-liquid flow in hydrocyclone[J]. Chemical and Biochemical Engineering Quarterly, 2011, 25(1):37-41.
[7] 应锐, 王卫兵, 邱艳军, 等. 电石渣提纯用水力旋流器的设计及优化[J]. 矿山机械, 2015, 43(4):95-98. YING Rui, WANG Wei-bing, QIU Yan-jun, et al. Design and optimization of hydrocyclone for purification of carbide slag[J]. Mining & Processing Equipment, 2015, 43(4):95-98.
[8] 蔡圃, 王博. 水力旋流器内非牛顿流体多相流场的数值模拟[J]. 化工学报, 2012, 63(11):3460-3469. CAI Pu, WANG Bo. Numerical simulation of multiphase flow field of non-newtonian fluid in hydrocyclone[J]. CIESC Journal, 2012, 63(11):3460-3469.
[9] 冯蕾. 烟气脱硫系统中固-液分离旋流器的三维数值研究[D]. 保定:华北电力大学, 2011. FENG Lei. The 3D numerical simulation study on solid-liquid hydrocyclone in flue gas desulfurization system[D]. Baoding:North China Electric Power University, 2011.
[10] 罗力. 水力旋流器固-液两相流动数值计算及性能分析[D]. 广州:华南理工大学, 2012. LUO Li. CFD and performance prediction of a solid-liquid hydrocyclone[D]. Guangzhou:South China of Technology, 2012.