SAR图像特征提取是目标识别中的关键步骤,直接影响目标识别的结果。长度类特征因其简单直观、效率高、易于提取等优势,常被作为船只类型的初始判定,针对SAR图像舰船目标长宽特征提取问题,本文提出一种新的方法。首先通过水平集分割获得目标轮廓,其次采用区域消除方法滤除杂波,获得预处理后的目标图像;其次通过最小外接矩形拟合目标,获取舰船目标切片的长轴、旋转的角度;再次采用最小二乘法椭圆拟合获取舰船目标短轴;最后得到舰船目标的长宽特征。通过实测SAR图像处理结果表明,本文方法能够在背景杂波干扰下,抑制相干斑噪声的影响,提高了长宽提取的精度,是一种有效的舰船目标长宽特征提取方法。
In this paper, a length and width feature extraction method for the ship target in the SAR images is proposed. Firstly, the SAR image is segmented by the level sets. The domain elimination method is adopted for the segmented images to remove clutter in the next step. Consequently, the slice image of target is obtained. Then, the minimum bounding rectangle and ellipse fitting methods are used for the feature extraction. We use the minimum bounding rectangle to obtain the long axis and the rotational angle of the ship in SAR image, and apply the Ellipse fitting method to get short axis of the ship target. Thus, the feature information of the ships including length, width and angle is obtained. Experimental results illustrate that the proposed method can extract the length and width feature of a ship target in SAR image effectively and accurately. Meanwhile, it can weaken the influence of speckle noise and background clutter in SAR image.
2016,38(3): 115-119 收稿日期:2015-08-06
DOI:10.3404/j.issn.1672-7619.2016.03.024
分类号:TN951
基金项目:国家自然科学基金资助项目(61179016)
作者简介:李德胜(1990-),男,硕士研究生,研究方向为雷达信号处理。
参考文献:
[1] 周珍娟, 韩金华. 舰船遥感图像的目标识别研究[J]. 舰船科学技术. 2014, 36(12):86-90. ZHOU Zhen-juan, HAN Jin-hua. Target recognition of ship's remote sensing images[J]. Ship Science and Technology, 2014, 36(12):86-90.
[2] ASKARI F, ZERR B. An automatic approach to ship detection in spaceborne synthetic aperture radar imagery:an assessment of ship detection capability using RADARSAT[R]. Italy:SACLANT Undersea Research Centre, 2000.
[3] 高贵, 匡纲要, 李德仁. 高分辨率SAR图像分割及目标特征提取[J]. 宇航学报, 2006, 27(2):238-244. GAO Gui, KUANG Gang-yao, LI De-ren. High-resolution SAR image segmentation and target's feature extraction[J]. Journal of Astronautics, 2006, 27(2):238-244.
[4] 吴樊, 王超, 张波, 等. SAR图像船只分类识别研究进展[J]. 遥感技术与应用, 2014, 29(1):1-8. WU Fan, WANG Chao, ZHANG Bo, et al. Study on vessel classification in SAR imagery:a survey[J]. Remote Sensing Technology and Application, 2014, 29(1):1-8.
[5] TIAN X J, WANG C, ZHANG H, et al. Extraction and analysis of structural features of ships in high resolution SAR images[C]//Proceedings of IEEE CIE International Conference on Radar. Chengdu:IEEE, 2011, 2:630-633.
[6] GU D D, XU X J. Multi-feature extraction of ships from SAR images[C]//Proceedings of the 6th International Congress on IEEE Image and Signal Processing (CISP). Hangzhou:IEEE, 2013, 1:454-458.
[7] MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5):577-685.
[8] CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277.