为解决现有水冲压发动机启动困难、金属燃料难于储存等问题,通过熔炼法制备一种新型铝铟镁三相合金。运用水反应测试装置、高压热分析天平、金相显微镜等测试手段,分析合金常温及高温下的水反应性能、表面形貌和活化机理。结果表明:该铝合金具有良好的储藏性能,在常温下单位质量的合金与水反应的产氢量仅为0.029 mL/mg;高温下铝合金与水蒸气反应分为4个阶段,在450℃前完成低温区反应,启动迅速。该合金能够代替现有普通铝粉和纳米铝粉,作为水冲压发动机主燃料使用。
In order to start metal/water ramjet, activate aluminum and its reaction with water, and improve the storage property at room temperature, a new type of aluminum alloy was prepared by melting method. Making use of water reaction test device, high pressure thermal analysis system and metallographic microscope, both surface morphology and activation mechanism of the alloy at different temperature were studied. The results show that the aluminum alloy has good storage performance, and produce only 0.029 mL/mg hydrogen at room temperature. The reaction of Al-In-Mg alloy and water vapor is divided into 4 stages, and first two stages can be finished before 450. This new alloy can be used to replace the ordinary aluminum powder and fine powder in the water pressing engine.
2016,38(3): 124-127,146 收稿日期:2015-11-04
DOI:10.3404/j.issn.1672-7619.2016.03.026
分类号:V512
作者简介:于嘉(1990-),男,硕士研究生,研究方向为水反应金属燃料和推进剂。
参考文献:
[1] 王晓欣, 党建军, 张学雷, 等. 一种水冲压发动机推力测试方法[J]. 鱼雷技术, 2015, 23(2):124-128, 133.
[2] MILLER T F, WALTER J L, KIELY D H. A next-generation AUV energy system based on aluminum-seawater combustion[C]//Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles.San Antonio, TX, USA:IEEE, 2002:111-119.
[3] 郑邯勇. 铝水推进系统的现状与发展前景[J]. 舰船科学技术, 2003, 25(5):24-25.
[4] 刘冠鹏, 李凤生, 郭效德. 铝粉燃料与水反应的研究进展[J]. 固体火箭技术, 2007, 30(2):138-141, 154.
[5] 马广璐, 庄大为, 戴洪斌, 等. 铝/水反应可控制氢[J].化学进展, 2012, 24(4):650-658.
[6] 李芳, 张为华, 张炜, 等. 铝基水反应金属燃料性能初步研究[J]. 国防科技大学学报, 2005, 27(4):4-7.
[7] IVANOV G V, IVANOV V G, SURKOV V G, et al. Nanosize electro-explosion powders:assessement of safety in the production and application[M]//ZARKO V E, WEISERV, EISENREICH N, et al. Prevention of Hazardous Fires and Explosions.Netherlands:Springer,1999, 26:329-340.
[8] 李鑫, 赵凤起, 郝海霞, 等. 不同类型微/纳米铝粉点火燃烧特性研究[J]. 兵工学报, 2014, 35(5):640-647.
[9] VLASKIN M S, SHKOLNIKOV E I, BERSH A V. Oxidation kinetics of micron-sized aluminum powder in high-temperature boiling water[J]. International Journal of Hydrogen Energy, 2011, 36(11):6484-6495.
[10] 江治, 李疏芬, 赵凤起, 等. 纳米铝粉和镍粉对复合推进剂燃烧性能的影响[J]. 推进技术, 2004, 25(4):368-372.
[11] 李伟, 包玺, 唐根, 等. 纳米铝粉在高能固体推进剂中的应用[J]. 火炸药学报, 2011, 34(5):67-70.
[12] ZIEBARTH J T, WOODALL J M, KRAMER R A, et al. Liquid phase-enabled reaction of Al-Ga and Al-Ga-In-Sn alloys with water[J]. International Journal of Hydrogen Energy, 2011, 36(9):5271-5279.
[13] WANG H Z, LEUNG D Y C, LEUNG M K H, et al. A review on hydrogen production using aluminum and aluminum alloys[J]. Renewable and Sustainable Energy Reviews, 2009, 13(4):845-853.
[14] KRAVCHENKO O V, SEMENENKO K N, BULYCHEV B M, et al. Activation of aluminum metal and its reaction with water[J]. Journal of Alloys and Compounds, 2005, 397(1/2):58-62.