针对深海立管涡激振动流场建立计算模型,分析了第一层网格高度、网格数量、时间步长对深海立管涡激振动DES模拟的升力系数、阻力系数、斯特罗哈尔数的影响,通过与文献中实验、计算数据的对比,说明SST k-ω湍流模型基础上的DES方法模拟低雷诺数深海立管涡激振动准确合理;网格第1层高度对计算精度影响较大,按0.51确定DES方法的第1层网格高度可得到满足要求的。
DES (Detached Eddy Simulation) method was used to simulate vortex induced vibration of smooth marine riser. The height of first layer of the grid and Grid-independent solution and time step-independence solution is obtained. The lift coefficient, the drag coefficient, Strouhal number (St) and other results agree well with experimental data and other numerical results. The results show that, DES method based on SST k-ω turbulence model is credible and valid to simulate vortex induced vibration of smooth marine riser; the requirement of the first layer of the grid can be satisfied by 0.5Δy1.
2016,38(3): 128-133 收稿日期:2015-03-30
DOI:10.3404/j.issn.1672-7619.2016.03.027
分类号:O353.1
基金项目:北京市教育委员会科技计划科研项目(KM201411232015);北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20130519);北京信息科技大学开放实验室课题(ICDD2015)资助
作者简介:朱敏玲(1979-),女,博士,讲师,主要从事计算机仿真及嵌入式领域研究。
参考文献:
[1] 胡胡伟. 高耸结构绕流与流固耦合的数值模拟[D]. 西安:西安建筑科技大学, 2010. HU Wei. Numerical simulation of wind pass high-rise structure and fluid-solid coupling[D]. Xi'an:Xi'an University of Architecture and Technology, 2010.
[2] 曹淑刚, 黄维平, 顾恩凯. 考虑流固耦合的弹性圆柱体涡激振动研究[J]. 振动与冲击, 2015, 34(1):58-62. CAO Shu-gang, HUANG Wei-ping, GU En-kai. Study on vortex-induced vibration of an elastic cylinder considering fluid-structure interaction[J]. Journal of vibration and shock, 2015, 34(1):58-62.
[3] 蒋仁杰. 圆柱绕流场涡致柱体振动的研究[D]. 杭州:浙江大学, 2013. JIANG Ren-jie. Research on vortex-induced vibrations in the flow around circular cylinders[D]. Hangzhou:Zhejiang University, 2013.
[4] 丁林, 张力, 杨仲卿. 高雷诺数时分隔板对圆柱涡致振动的影响[J]. 机械机械工程学报, 2013, 49(14):133-139. DING Lin, ZHANG Li, YANG Zhong-qing. Effect of splitter plate on vortex-induced vibration of circular cylinder at high Reynolds number[J]. Journal of mechanical engineering, 2013, 49(14):133-139.
[5] 李骏, 李威. 基于SST k-ω湍流模型的二维圆柱涡激振动数值仿真计算[J]. 舰船科学技术, 2015, 37(2):30-34. LI Jun, LI Wei. Numerical simulation of vortex-induced vibration of a two-dimensional circular cylinder based on the SST k-ω turbulent model[J]. Ship science and technology, 2015, 37(2):30-34.
[6] STRELETS M. Detached eddy simulation of massively separated flows[R]. AIAA-01-0879. San Antonio, Texas:American Institute of Aeronautics & Astronautics, 2001.
[7] MENTER R. Zonal Two equation k-turbulence models for aerodynamics flows[R]. AIAA-93-2906. Orlando, FL:American Institute of Aeronautics & Astronautics, 1993.
[8] 顾春伟, 陈美兰, 李雪松, 等. DES模型在压气机叶栅中的应用研究[J]. 工程热物理学报, 2008, 29(12):2007-2010. GU Chun-wei, CHEN Mei-lan, LI Xue-song, et al. Application of DES model in the compressor cascade flow[J]. Journal of engineering thermophysics, 2008, 29(12):2007-2010.
[9] 时忠民, 刘名名, 郭晓玲. 计算域对圆柱绕流数值模拟结果的影响[J]. 中国水运, 2013, 13(7):83-88. SHI Zhong-min, LIU Ming-ming, GUO Xiao-ling. Effect of flow field on flow around circular cylinder[J]. China water transport, 2013, 13(7):83-88. (未链接到本条文献英文信息)
[10] SPALART P R. Young-person's guide to detached-eddy simulation grids[R]. NASA/CR-2001-211032. Washington:Boeing Commercial Airplanes, 2001
[11] 常书平, 王永生, 庞之洋. 用基于SST模型的DES方法数值模拟圆柱绕流[J]. 舰船科学技术, 2009, 31(2):30-33. CHANG Shu-ping, WANG Yong-sheng, PANG Zhi-yang. Numerical simulation of flow around circular cylinder using SST DES model[J]. Ship science and technology, 2009, 31(2):30-33.
[12] NASA. Viscous grid spacing calculator[EB/OL]. 1997. http://geolab.larc.nasa.gov/APPS/YPlus/.
[13] SUTHERLAND W. The viscosity of gases and molecular force[J]. Philosophical magazine, 1893, 36(223):507-531
[14] BRAZA M, CHASSAING P, MINH H H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J]. Journal of fluid mechanics, 1986, 165:79-130
[15] 魏志理, 孙德军, 尹协远. 圆柱尾迹流场中横向振荡翼型绕流的数值模拟[J]. 水动力学研究与进展(A辑), 2006, 21(3):299-308. WEI Zhi-li, SUN De-jun, YIN Xie-yuan. A numerical simulation of flow around a transversely oscillating hydrofoil in the wake of a circular cylinder[J]. Journal of Hydrodynamics, 2006, 21(3):299-308.