针对船舶中压直流综合电力系统,分析系统的结构和特性。给出船舶中压直流综合电力系统的机理模型,包括原动机、发电机、推进电机和四象限负载等。在PLECS软件中建立船舶中压直流综合电力系统的仿真模型,实现了系统起动、加速和突然倒车等正常和极端工况的数字仿真,仿真结果验证了本文所进行的数字仿真研究的正确性,能够为系统的早期设计提供仿真工具。
Aiming at shipboard medium voltage DCMVDC integrated power system, the structure and characteristic of the system is analyzed in this paper. The mathematical model of the system, including prime-mover, generator, propulsion motor and four-quadrant propeller load is proposed. Then the simulation model of MVDC shipboard integrated power system is established in PLECS simulation software, and the numeric simulation of the normal and emergency operating conditions such as start, speed up and crash back is carried out. The simulation of the normal and emergency conditions for the whole system is then achieved. The simulation results validate the research of the numerical simulation for the shipboard MVDC integrated power system, which can provide simulation tools in the early design stage for the system.
2016,38(4): 87-92 收稿日期:2015-11-23
DOI:10.3404/j.issn.1672-7619.2016.04.018
分类号:TM743
作者简介:程垠钟(1987-),男,博士,工程师,主要从事船舶综合电力系统的建模、仿真、分析等研究工作。
参考文献:
[1] 马伟明. 舰船动力发展的方向——综合电力系统[J]. 海军工程大学学报, 2002, 14(6):1-5, 9. MA Wei-ming. Integrated power systems——trend of ship power development[J]. Journal of Naval University of Engineering, 2002, 14(6):1-5, 9.
[2] DOERRY N, MCCOY K. Next generation integrated power system:NGIPS technology development roadmap[R]. Washington DC:Naval Sea Systems Command, 2007.
[3] 刘胜, 张玉廷, 余辰光. 船舶电力推进系统电机组三维模糊控制[J]. 中国电机工程学报, 2012, 32(3):117-123. LIU Sheng, ZHANG Yu-ting, YU Chen-guang. Three-dimensional fuzzy control for ship electric propulsion turbine[J]. Proceedings of the CSEE, 2012, 32(3):117-123.
[4] LIU S, CHENG Y Z. Modeling of a twelve-phase synchronous machine using Matlab/Simpowersystems[C]//Proceedings of International Conference on Electronics, Communications and Control. Ningbo:IEEE, 2011:2131-2134.
[5] 王淼, 戴剑锋, 周双喜, 等. 全电力推进船舶电力系统的数字仿真[J]. 电工技术学报, 2006, 21(4):62-67. WANG Miao, DAI Jian-feng, ZHOU Shuang-xi, et al. Digital simulation of ship power system with electric propulsion[J]. Transactions of China Electrotechnical Society, 2006, 21(4):62-67.
[6] CHOU H M, ITUZARO F A, BUTLER-PURRY K L. A PC-based test bed for NG IPS for ships in PSCADTM[C]//Proceedings of IEEE Electric Ship Technologies Symposium (ESTS). Alexandria, VA:IEEE, 2011:135-142.
[7] ZAHEDI B, NORUM L E. Modeling and simulation of all-electric ships with low voltage DC hybrid power systems[J]. IEEE Transactions on Power Electronics, 2013, 28(10):4525-4537.
[8] MARDEN MM, PREMPRANEERACH P, KIRTLEY J L, et al. An end-to-end simulator for the all-electric ship MVDC integrated power system[C]//Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation. Vista, CA:Society for Modeling & Simulation International, 2010:136-143.
[9] BASH M, CHAN R R, CRIDER J, et al. A medium voltage DC testbed for ship power system research[C]//Proceedings of IEEE Electric Ship Technologies Symposium. Baltimore, MD:IEEE, 2009:560-567.
[10] APSLEY J M, GONZALEZ-VILLASENOR A, BARNES M, et al. Propulsion drive models for full electric marine propulsion systems[J]. IEEE Transactions on Industry Applications, 2009, 45(2):676-684.
[11] SIMULINK. Dynamic system simulation software users manual[EB/OL]. Math Works. http://www.mathworks.com.
[12] ALIMELING J H, HAMMER W P. PLECS-piece-wise linear electrical circuit simulation for Simulink[C]//Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. Hong Kong:IEEE, 1999, 1:355-360.
[13] 王成山, 李鹏, 黄碧斌, 等. 一种计及多重开关的电力电子时域仿真插值算法[J]. 电工技术学报, 2010, 25(6):83-88. WANG Cheng-shan, LI Peng, HUANG Bi-bin, et al. An interpolation algorithm for time-domain simulation of power electronics circuit considering multiple switching events[J]. Transactions of China Electrotechnical Society, 2010, 25(6):83-88..
[14] ROWEN W I. Simplified mathematical representations of heavy-duty gas turbines[J]. Journal of Engineering for Power, 1983, 105(4):865-869.
[15] MAYER J S, WASYNCZUK O. An efficient method of simulating stiffly connected power systems with stator and network transients included[J]. IEEE Transactions on Power Systems, 1991, 6(3):922-929.
[16] KRAUSE P C, WASYNCZUK O, SUDHOFF S D, et al. Analysis of electric machinery and drive systems[M]. 3rd ed. New York:Wiley, 2013.
[17] RIM C T, CHOI N S, CHO G C, et al. A complete DC and AC analysis of three-phase controlled-current PWM rectifier using circuit D-Q transformation[J]. IEEE Transactions on Power Electronics, 1994, 9(4):390-396.
[18] TAKAHASHI I, NOGUCHI T. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Transactions on Industry Applications, 1986, IA-22(5):820-827.
[19] TUPPER E C, RAWSON K J. Basic ship theory[M]. Boston:Butterworth-Heinemann, 2001.
[20] HOLSONBACK C R. Dynamic thermal-mechanical-electrical modeling of the integrated power system of a national all-electric naval surface ship[D]. Texas:University of Texas at Austin, 2007.
[21] MILOŠEVIĆ M, PREMPRANEERACH P, KIRTLEY J L, et al. An end-to-end simulator for the all-electric ship MVDC integrated power system[C]//Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation. Vista, CA:Society for Modeling & Simulation International, 2010:136-143.