受成像体制影响,合成孔径雷达(Synthetic aperture radar,SAR)图像带有非高斯的乘性相干斑噪声。为有效抑制乘性相干斑噪声,提出一种融合非局部均值滤波(Non-local means filter, NLMF)与全变差(Total variation,TV)正则化的非局部均值-全变差(NLM-TV)降噪算法。首先将相干斑噪声转换为依赖于散射强度的加性噪声,将SAR图像分为边缘、强散射区、弱散射区。然后利用NLMF进行降斑,为有效的保持边缘结构,NLMF的平滑参数选取较小。在强散射区,为解决平滑参数较小所带来的降斑不充分问题,进一步使用TV正则化进行平滑处理,获得最终的降噪结果。使用RADARSAT-2,TerraSAR-X两景实测SAR图像仿真实验,结果表明:相比多种滤波算法,NLM-TV算法在弱散射区,强散射区均能显著提高等效视数,边缘保持指数能够提高10%以上。
Due to the limit of imaging system, synthetic aperture radar images are often corrupted with non-Gaussian multiplicative speckle noise. For the purpose of noise suppression, an algorithm called NLM-TV is proposed, which integrates non-local means filter and total variation regularization. It involves three steps. First, convert the multiplicative noise into signal-dependent additive noise, dividing the image into three categories based on noise level, the edge, the strong scattering region and the weak scattering region. Non-local means filter was then applied. To maintain the edge structure effectively, the smooth parameter must be small. In the strong scattering region, TV regularization was used because of insufficient reduction of speckles. In this paper, several simulations were conducted in RADARSAT-2 and TerraSAR-X images, the results showed that compared to a variety of filtering algorithms, NLM-TV algorithm could significantly increase the equivalent number of looks both in the weak scattering area and strong scattering regions. At the same time, edge keeping index could be increased by more than 10%.
2016,38(5): 105-110 收稿日期:2016-03-21
DOI:10.3404/j.issn.1672-7619.2016.05.023
分类号:TP751.1
作者简介:范惠玲(1978-),女,博士研究生,研究方向为SAR图像解译及极化SAR信息提取。
参考文献:
[1] 焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M]. 北京:科学出版社, 2008:43-53.
[2] GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11):1145-1150.
[3] LEE J S. A simple speckle smoothing algorithm for synthetic aperture radar images[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC-13(1):85-89.
[4] KUAN D, SAWCHUK A, STRAND T, et al. Adaptive restoration of images with speckle[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3):373-383.
[5] YU Y J, ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11):1260-1270.
[6] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639.
[7] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA:IEEE, 2005, 2:60-65.
[8] ZHONG H, LI Y W, JIAO L C. SAR image despeckling using Bayesian nonlocal means filter with sigma Preselection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):809-813.
[9] PARRILLI S, PODERICO M, ANGELINO C V, et al. A non-local SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):606-616.
[10] JOJY C, NAIR M S, SUBRAHMANYAM G R K S, et al. Discontinuity adaptive non-local means with importance sampling unscented Kalman filter for despeckling SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Obersvations and Remote Sensing, 2013, 6(4):1964-1970.
[11] 郑永恒,程建,曹宗杰.改进非局部均值滤波的SAR图像降噪[J]. 中国图象图形学报, 2012, 17(7):886-891.
[12] 杨学志,沈晶,范良欢.基于非局部均值滤波的结构保持相干斑噪声抑制方法[J].中国图象图形学报, 2009, 14(12):2443-2450.
[13] DA CUNHA A L, ZHOU J, DO M N. The nonsubsampled contourlet transform:Theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10):3089-3101.
[14] 常霞,焦立成,刘芳.基于斑点方差估计的非下采样Contour-let域SAR图像去噪[J]. 电子学报, 2010, 38(6):1328-1333.
[15] 贾建,陈莉.基于双变量模型和非下采样Contourlet变换的SAR图像相干斑抑制[J].电子与信息学报, 2011, 33(5):1088-1094.
[16] WEN Y W, Chan R H. Parameter selection for total-variation-based image restoration using discrepancy principle[J]. IEEE Transactions on Image Processing, 2012, 21(4):1770-1781.
[17] SHEN J H, CHAN T. Variational restoration of nonflat image features:Models and algorithms[J]. SIAM Journal on Applied Mathematics, 2001, 61(4):1338-1361.
[18] BECK A, TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11):2419-2434.