为提高焊接热弹塑性数值模拟的效率,采用静态子结构方法实现焊接热传导分析计算。根据船体加筋板结构的重复性和对称性特点,将整个结构根据加强筋划分为若干相同的静态子结构,计算得到1条焊缝的温度分布后,通过温度场的镜像和平移获得整个结构的温度场。以船体加筋板为例,采用静态子结构方法并结合温度场的镜像和平移技术,计算分析船体加筋板的焊接温度场和应力场结果。计算表明,该方法在保证计算精度的前提下,极大地提高了计算效率。
In order to improve the efficiency of thermal elastic plastic finite element method (TEP FEM), the static substructure method is adopted to fulfill heat transfer analysis of welding process. The overall stiffened plate structure is divided into several uniform static substructures according to its repeatability and symmetry. Heat transfer analysis of one substructure welding is implemented by means of TEP FEM and then the temperature fields of other substructure welding are obtained via mirroring and translation from the calculated results. The static substructure method is applied to the welding simulation of a stiffened plate structure in hull and good agreements of thermal and mechanical results are obtained. The efficiency of the proposed approach is proved extremely high compared with the existed method.
2016,38(6): 47-51,80 收稿日期:2015-10-08
DOI:10.3404/j.issn.1672-7619.2016.06.009
分类号:U661.4
作者简介:喻琪(1991-),女,硕士研究生,主要从事船舶与海洋工程结构焊接模拟研究。
参考文献:
[1] 周宏, 罗宇, 蒋志勇. 基于固有应变的船体总段船台合拢焊接变形预测研究[J]. 船舶力学, 2013, 17(10):1153-1160. ZHOU Hong, LUO Yu, JIANG Zhi-yong. Prediction of welding deformation of block construction of hull based on inherent strain methods[J]. Journal of Ship Mechanics, 2013, 17(10):1153-1160.
[2] 徐东, 杨润党, 王文荣, 等. 船体结构焊接变形预测与控制技术研究进展[J]. 舰船科学技术, 2010, 32(1):132-137. XU Dong, YANG Run-dang, WANG Wen-rong, et al. Review on prediction and control welding distortion of ship structure[J]. Ship Science and Technology, 2010, 32(1):132-137.
[3] 蔡志鹏, 赵海燕, 吴甦, 等. 串热源模型及其在焊接数值模拟中的应用[J]. 机械工程学报, 2001, 37(4):25-28, 43. CAI Zhi-peng, ZHAO Hai-yan, WU Su, et al. Model of string heat source in welding numerical simulations[J]. Chinese Journal of Mechanical Engineering, 2001, 37(4):25-28, 43.
[4] SHEN J C, CHEN Z. Welding simulation of fillet-welded joint using shell elements with section integration[J]. Journal of Materials Processing Technology, 2014, 214(11):2529-2536.
[5] 沈济超, 陈震, 罗宇. 船舶T型接头分段移动热源焊接模拟[J]. 中国造船, 2014, 55(4):66-73. SHEN Ji-chao, CHEN Zhen, LUO Yu. Welding simulation of T-shape joint in hull by segmented moving heat source[J]. Shipbuilding of China, 2014, 55(4):66-73.
[6] 刘川, 张建勋. 基于动态子结构的三维焊接残余应力变形数值模拟[J]. 焊接学报, 2008, 29(4):21-24. LIU Chuan, ZHANG Jian-xun. Numerical simulation of welding stresses and distortions based on 3D dynamic substructure method[J]. Transactions of the China Welding Institution, 2008, 29(4):21-24.
[7] DENG D A, LIANG W, MURAKAWA H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements[J]. Journal of Materials Processing Technology, 2007, 183(2/3):219-225.
[8] PARDO E, WECKMAN D C. Prediction of weld pool and reinforcement dimensions of GMA welds using a finite-element model[J]. Metallurgical Transactions B, 1989, 20(6):937-947.
[9] 曹金凤, 王旭春, 孔亮. Python语言在Abaqus中的应用[M]. 北京:机械工业出版社, 2011:202-229. CAO Jin-feng, WANG Xu-chun, KONG Liang. The application of Python in Abaqus[M]. Beijing:China Machine Press, 2011:202-229.