针对水下航行器用冷凝器的结构特性和使用环境,建立冷凝器中小通道内蒸汽冷凝换热过程的焓值模型,对流换热系数模型和压力模型。根据4种不同的换热系数计算式,求解对应关系式下的焓值、温度、压力和干度仿真值,并结合实验数据进行对比分析,得到在单相区采用D-B关联式,在两相区采用A-R关联式,计算的结果误差最小。并以此为基础,对小通道的截面尺寸进行计算分析,计算结果表明:当通道截面宽度为6 mm时,小通道具有较好的流动换热能力,为水下航行器的工程设计提供重要参考。
According to the underwater environment and use structural characteristics of the condenser of underwater vehicle, the paper develops the the model of enthalpy, the model of convective heat transfer coefficient and the model of pressure. Based on the four kinds of formula of heat transfer coefficient, the paper solves the simulation value of the enthalpy, temperature, pressure and dry degree, and compared them with the experimental data. The results show that using the D-B correlation in the single-phase region and using A-R correlation in two-phase region, the simulation results is most consistent with experimental data. And based on this, this paper calculates and analyzes the cross section size of the small channel. The results show that when the width is 6 mm, the small channel has a good flow and heat transfer capability, and provide an important reference for the engineering design of underwater vehicle.
2016,38(6): 86-91 收稿日期:2016-03-22
DOI:10.3404/j.issn.1672-7619.2016.06.017
分类号:U674.941
基金项目:国家自然科学基金资助项目(61403306);中国博士后科学基金特别资助项目(2015T81062);中国博士后科学基金资助项目(2014M552503)
作者简介:白超(1990-),男,硕士研究生,研究方向为能源动力推进技术。
参考文献:
[1] 查志武, 史小锋, 钱志博. 鱼雷热动力技术[M]. 北京:国防工业出版社, 2006. ZHA Zhi-wu, SHI Xiao-feng, QIAN Zhi-bo. Technique of torpedo thermal power[M]. Beijing:National Defence Industry Press, 2006.
[2] 郝保安, 孙起. 水下制导武器[M]. 北京:国防工业出版社, 2014. HAO Bao-an, SUN Qi. Underwater guided weapons[M]. Beijing:National Defence Industry Press, 2014.
[3] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 5版. 北京:中国建筑工业出版社, 2007. ZHANG Xi-min, REN Ze-pei, MEI Fei-ming. Heat transfer[M]. 5th ed. Beijing:China Architecture & Building Press, 2007.
[4] 朱晓红, 李海东, 张卫东. 船用膜式螺旋管换热器传热和流动特性研究[J]. 舰船科学技术, 2015, 37(8):165-168. ZHU Xiao-hong, LI Hai-dong, ZHANG Wei-dong. Numerical studies on heat transfer and flow of membrane spiral-tube marine heat exchanger[J]. Ship Science and Technology, 2015, 37(8):165-168.
[5] ZHAO T S, BI Q C. Pressure drop characteristics of gas-liquid two-phase flow in vertical miniature triangular channels[J]. International Journal of Heat and Mass Transfer, 2001, 44(13):2523-2534.
[6] 李冠球. 板式换热器传热传质实验与理论研究[D]. 杭州:浙江大学, 2012. LI Guan-qiu. Experimental and theoretical investigation of heat and mass transfer in plate heat exchanger[D]. Hangzhou:Zhejiang University, 2012.
[7] 吴嘉峰. 微通道流动冷凝流型和传热机理的研究[D]. 南京:东南大学, 2009. WU Jia-feng. The research of flow pattern and heat transfer mechanism of micro channel flow[D]. Nanjing:Southeast University, 2009.
[8] 杨玉顺. 工程热力学[M]. 北京:机械工业出版社, 2009. YANG Yu-shun. Engineering thermodynamics[M]. Beijing:China Machine Industry Press, 2009.
[9] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京:高等教育出版社, 2010. YANG Shi-ming, TAO Wen-quan. Heat transfer theory[M]. 4th ed. Beijing:Higher Education Press, 2010.
[10] AKERS W W, DEANS H A, CROSSER O K. Condensation heat transfer within horizontal tubes[J]. Chemical Engineering Progress Symposium Series, 1959, 55(29):171-176.
[11] DEBRAY F, FRANC J P, MAITRE T, et al. Mesure des coefficients de transfert thermique par convection forcée en mini-canaux[J]. Mécanique & Industries, 2001, 2(5):443-454.