潜艇水动力系数对其水动力性能研究具有重要意义。为了获取潜艇旋转导数,本文以结构化网格为背景,采用旋转坐标系方法将潜艇旋臂试验数值模拟转化为定常问题,对Suboff裸艇与全附体在 2 种不同的湍流模型下进行数值仿真,并与试验数据对比,发现仿真结果与实际较为相符,其中标准 k-ω 的仿真结果总体优于 RNG k-ω,表明方法可行且拥有较高计算效率。本研究对获取潜艇旋转导数有一定参考价值。
The hydrodynamic coefficients are significant for the hydrodynamic performance of submarine. In order to obtain the rotary derivative of submarine, structural grid and rotating coordinates were adopted to transfer the numerical simulation results of submarine rotating arms to a steady problem. Simulations based on SUBOFF submarine and fully enclosed submarine were performed in two different turbulent models, the results were pretty compatible with the fact. Among the two models, standard k-ω is more accurate than RNG k-ω. This method proved to be reasonable and efficient, which contributes significantly to the research on the rotary derivative of submarine.
2016,38(7): 64-67,70 收稿日期:2015-09-20
DOI:10.3404/j.issn.1672-7619.2016.07.014
分类号:U661.3
基金项目:国家自然科学基金资助项目(51179196)
作者简介:邓峰(1990-),男,硕士研究生,研究方向为潜艇操纵与运动仿真研究。
参考文献:
[1] 王超, 郑小龙, 李亮, 等. Y+值对潜艇流场大涡模拟计算精度的影响[J]. 华中科技大学学报(自然科学版), 2015, 43(4):79-83. WANG Chao, ZHENG Xiao-long, LI Liang, et al. Influence of Y+ on the calculation of submarine flow field characteristics of LES calculation accuracy[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(4):79-83.
[2] 张楠, 沈泓萃, 姚惠之. 潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J]. 船舶力学, 2005, 9(1):1-13. ZHANG Nan, SHEN Hong-cui, Yao Hui-zhi. Validation of numerical simulation on resistance and flow field of submarine and numerical optimization of submarine hull form[J]. Journal of Ship Mechanics, 2005, 9(1):1-13.
[3] 潘子英, 吴宝山, 沈泓萃. CFD在潜艇操纵性水动力工程预报中的应用研究[J]. 船舶力学, 2004, 8(5):42-51. PAN Zi-ying, WU Bao-shan, SHEN Hong-cui. Research of CFD application in engineering estimation of submarine maneuverability hydrodynamic forces[J]. Journal of Ship Mechanics, 2004, 8(5):42-51.
[4] 涂海文, 孙江龙. 基于CFD的潜艇阻力及流场数值计算[J]. 舰船科学技术, 2012, 34(3):19-25. TU Hai-wen, SUN Jiang-long. Numerical analysis of resistance and flow field of submarine based on CFD[J]. Ship Science and Technology, 2012, 34(3):19-25.
[5] 肖昌润, 刘瑞杰, 许可, 等. 潜艇旋臂回转试验数值模拟[J]. 江苏科技大学学报(自然科学版), 2014, 28(4):313-316. XIAO Chang-run, LIU Rui-jie, XU Ke, et al. Simulation for submarine rotating-arm tests[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2014, 28(4):313-316.
[6] 刘帅, 葛彤, 赵敏. 基于源项法的潜艇旋臂试验模拟[J]. 大连海事大学学报, 2011, 37(2):1-4. LIU Shuai, GE Tong, ZHAO Min. Simulation for submarine rotating-arm test based on added momentum source method[J]. Journal of Dalian Maritime University, 2011, 37(2):1-4.
[7] 王骁, 蔡烽, 石爱国, 等. 双桨双舵舰船旋臂试验粘性流场数值模拟方法研究[J]. 船舶力学, 2014, 18(7):786-793. WANG Xiao, CAI Feng, SHI Ai-guo, et al. Numerical simulation of the viscous flow over the ship with twin-propellers and twin-rudders in rotating arm tests[J]. Journal of Ship Mechanics, 2014, 18(7):786-793.
[8] 黄成涛. 浅水中作回转运动船体粘性绕流计算[D]. 武汉:华中科技大学, 2007. HUANG Cheng-tao. Numerical calculate for viscous flow about a swirling ship in shallow water[D]. Wuhan:Huazhong University of Science and Technology, 2007.
[9] 林俊兴, 倪刚, 戴余良, 等. 潜艇定常回转运动参数变化规律研究[J]. 舰船科学技术, 2014, 36(1):31-33, 37. LIN Jun-xing, NI Gang, DAI Yu-liang, et al. Research on parameters' change rule of submarine's steady rotary movement[J]. Ship Science and Technology, 2014, 36(1):31-33, 37.
[10] 胡志强, 林扬, 谷海涛. 水下机器人粘性类水动力数值计算方法研究[J]. 机器人, 2007, 29(2):145-150. HU Zhi-qiang, LIN Yang, GU Hai-tao. On numerical computation of viscous hydrodynamics of unmanned underwater vehicle[J]. Robot, 2007, 29(2):145-150.
[11] RODDY R F. Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments[R]. Washington D.C:David Taylor Research Center, 1990.
[12] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京:清华大学出版社, 2006. WANG Fu-jun. Computational fluid dynamics analysis-the theory and application of CFD software[M]. Beijing:Tsinghua University Press, 2006.