首先针对中高频水声信号,提出一种改进的经验模态分解加小波软阈值滤波方法;然后将信号进行带通滤波处理及经验模态分解,将分解得到的各个模态转换为频域信号,采用小波软阈值方法在频域上对这些模态进行滤波,最后对信号进行重构,并将其转换为时域信号。分别采用本方法和原时域上的小波阈值方法对不同频率的水声信号进行滤波,经计算分析可知,对频率小于 800 Hz 的水声信号,采用原方法可获得较好的滤波效果;当信号频率大于 800 Hz 时,采用本方法的滤波效果更好,因此应针对不同频率的水声信号,选择合适的滤波方法,以获得满意的滤波效果。
This work studies a method for filtering intermediate and high frequency underwater acoustic signal based on the ensemble empirical mode decomposition (EEMD) and the wavelet soft threshold (WST) methods. Firstly, the band-pass filter is used to denoise the signal with noise. Secondly, the EEMD method is used to process the signal, then the intrinsic mode functions (IMFs) are transformed to signals in frequency domain, respectively. Thirdly, the IMFs in frequency domain are filtered by using the WST method. Finally, the IMFs are added to reconstruct the signal in frequency domain, and then the signal in time domain is obtained. This method and the original WST method are used to filter the underwater acoustic signal with different frequencies respectively. The following acquaintances can be observed: When the frequency of the underwater acoustic signal is less than 800Hz, the original filtering method can obtain better result. However, when the frequency is more than 800Hz, the new method can get better result. In order to obtain the satisfied filtering result, the filtering method should be chosen based on the frequency of the underwater acoustic signal.
2016,38(7): 71-76,81 收稿日期:2015-10-08
DOI:10.3404/j.issn.1672-7619.2016.07.016
分类号:TP274
作者简介:丁浩(1979-),男,讲师,主要从事水声信号处理方面的研究工作。
参考文献:
[1] 孙晖. 经验模态分解理论与应用研究[D]. 杭州:浙江大学, 2005.
[2] 王婷. EMD算法研究及其在信号去噪中的应用[D]. 哈尔滨:哈尔滨工程大学, 2010.
[3] 谢胜利, 何昭水, 高鹰. 信号处理的自适应理论[M]. 北京:科学出版社, 2006.
[4] 张光明, 申永军, 吴彦彦. 基于Gabor变换的信号降噪方法[J]. 石家庄铁道学院学报(自然科学版), 2009, 22(3):86-90.
[5] 杨晓斌, 李海涛. Wigner-Vill分布在舰船调制特征提取中的应用研究[J]. 声学与电子工程, 2012(2):14-16.
[6] 余秋星, 符新伟, 李志舜. 基于小波变换的主动水声信号检测[J]. 声学技术, 2003, 22(2):102-104.
[7] 刘盛. 自适应时频分析研究与发展[D]. 南昌:南昌航空大学, 2011.
[8] 韩中合, 朱霄珣, 李文华, 等. 基于EMD消除Wigner-vill分布交叉项的研究[J]. 汽轮机技术, 2010, 52(3):211-214.
[9] 郑钧, 侯锐锋. 小波去噪中小波基的选择[J]. 沈阳大学学报, 2009, 21(2):108-110.
[10] 毛玉龙, 范虹. 经验模式分解回顾与展望[J]. 计算机工程与科学, 2014, 36(1):155-162.
[11] 江力, 李长云. 基于经验模分解的小波阈值滤波方法研究[J]. 信号处理, 2005, 21(6):659-662.
[12] QI K Y, HE Z J, ZI Y Y. Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21(7):2750-2760.
[13] DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455.
[14] HE Z, SHEN Y, WANG Q. Boundary extension for Hilbert-Huang transform inspired by gray prediction model[J]. Signal Processing, 2012, 92(3):685-697.
[15] WU Z H, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
[16] WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society a:Mathematical, Physical and Engineering Sciences, 2004, 460(2046):1597-1611.