钢悬链线立管的疲劳分析得到越来越多的重视,尤其是其与海床土体相互作用引起的疲劳。本文根据 Aubeny 提出的管土作用模型以及 Bridge 提出的土体吸力模型,采用有限元方法,在考虑其与海床土体相互作用的基础上,分析了钢悬链线立管在不同载况作用下的动力响应及疲劳损伤。分析发现,钢悬链线立管上触地点和悬挂点处的疲劳损伤更为显著;洋流载荷对立管疲劳损伤的影响随着水深的增加而减弱;土体吸力的存在,会增大触地段尤其是触地点附近的疲劳损伤;立管触地点附近的疲劳损伤与土体刚度呈正相关。
Recently, more and more attention has been paid on the fatigue analysis of the steel caternary riser (SCR), especially the issue of the pipe-soil interaction. According to the pipe-soil interaction model proposed by Aubeny and the soil suction model proposed by Bridge, the dynamic responses analysis of a SCR under the sea load and other different conditions, are performed and discussed in this paper. The results were used as input data in fatigue analysis of the SCR. Compared with other points of the SCR, the touchdown point and the hanging point bear more drastic fatigue damage; the effect of sea flow on the riser fatigue damage decreases with the increase of water depth; the existence of soil suction will lead to a larger fatigue damage in the touchdown point and the region nearby; the higher the soil stiffness is, the larger the fatigue damage of the SCR in touchdown zone will be.
2016,38(7): 103-107,132 收稿日期:2015-12-08
DOI:10.3404/j.issn.1672-7619.2016.07.023
分类号:P751
作者简介:李敢(1987-),男,助理工程师,从事水面舰艇技术研究工作。
参考文献:
[1] 黄维平, 李华军. 深水开发的新型立管系统:钢悬链线立管(SCR)[J]. 中国海洋大学学报, 2006, 36(5):775-780. HUANG Wei-ping, LI Hua-jun. A new type of deepwater riser in offshore oil & gas production:the steel catenary riser, SCR[J]. Periodical of Ocean University of China, 2006, 36(5):775-780.
[2] AUBENY C P, BISCONTIN G. Seafloor-riser interaction model[J]. International Journal of Geomechanics, 2009, 9(3):133-141.
[3] NAKHAEE A. Study of the fatigue life of steel catenary risers in interaction with the seabed[D]. Texas, USA:Texas A&M University, 2010:4-10.
[4] NAKHAEE A, ZHANG J. Trenching effects on dynamic behavior of a steel catenary riser[J]. Ocean Engineering, 2010, 37(2/3):277-288.
[5] 杜金新, LOW Y M. 海洋立管-海床土体接触作用数值分析[J]. 工程地质计算应用, 2008(4):6-11. DU Jin-xin, LOW Y M. The numerical analysis of sea riser-seabed soil contact[J]. Engineering Geology Computer Application, 2008(4):6-11.
[6] 杨和振, 李华军. 深海钢悬链立管时域疲劳寿命预估研究[J]. 振动与冲击, 2010, 29(3):22-25. YANG He-zhen, LI Hua-jun. Time domain fatigue life prediction for deepwater steel catenary riser[J]. Journal of Vibration and Shock, 2010, 29(3):22-25.
[7] 傅俊杰, 杨和振. 深海钢悬链立管触地点动力响应分析[J]. 海洋工程, 2009, 27(2):36-40, 45. FU Jun-jie, YANG He-zhen. Dynamic response analysis of a deepwater steel catenary riser at the touchdown point[J]. The Ocean Engineering, 2009, 27(2):36-40, 45.
[8] BRIDGE C, WILLS N. Steel catenary riser-results and conclusions from large scale simulations of seabed interaction[R]. UK:2H Offshore Engineering Ltd, 2002:5-10.
[9] AUBENY C P, BISCONTIN G, ZHANG J. Seafloor interaction with steel catenary risers[R]. Texas:Offshore Technology Research Center of Texas A&M University, 2006:2-6.
[10] 杨进, 刘书杰, 姜伟, 等. ANSYS在海洋石油工程中的应用[M]. 北京:石油工业出版社, 2010:39-45.
[11] SPARKS C. Fundamentals of marine riser mechanics[M]. Tulsa:Penn Well Corporation, 2007:61-75.
[12] DUNLAP W A, BHOJANALA R P, MORRIS D V. Burial of vertically loaded offshore pipelines in weak sediments[C]//Proceedings of Offshore Technology Conference. Houston, Texas, USA:SPE, 1990:263-270.
[13] BRIDGE C, LAVER K, CLUKEY E, et al. Steel catenary riser touchdown point vertical interaction models[C]//Proceedings of Offshore Technology Conference. Houston, Texas, USA:SPE, 2004:876-885.
[14] DNV. Fatigue assessment of ship structures[R]. Hvik:DET Norske Veritas, 2003.
[15] LEIPPER D F. A sequence of current patterns in the gulf of Mexico[J]. Journal of Geophysical Research, 1970, 75(3):637-657.
[16] 黄祥鹿, 陆鑫森. 海洋工程流体力学及结构动力响应[M]. 上海:上海交通大学出版社, 1992:81-88.
[17] 白兴兰, 黄维平, 高若沉. 海床土刚度对钢悬链线立管触底点动力响应分析的影响[J]. 工程力学, 2011, 28(S1):211-216. BAI Xing-lan, HUANG Wei-ping, GAO Ruo-chen. Effect of seabed soil stiffness on dynamic response of a steel catenary riser at touchdown point[J]. Engineering Mechanics, 2011, 28(S1):211-216.