波浪能滑翔机是一款基于波浪能驱动的自主海洋移动监测平台,将波浪作用于海面浮体的升沉运动转化为前进运动,可实时、大范围、长时间完成不同海况下的海洋监测。文中首先介绍波浪能滑翔机的结构组成、运动原理以及在海洋观测中的应用,接着主要论述近年来国内外波浪能滑翔机理论和数值计算研究内容,并基于国内外波浪能滑翔机多体系统动力学和水动力学研究现状的分析,提出我国在波浪能滑翔机水动力方面存在的不足及其今后重点研究的建议。
The wave glider is an autonomous surface platform driven by wave power, it converts the heave motion of the floating body acted by wave power into forward movement, so it can complete the persistent observation in a variety of marine environment, real-time, and large scope. This paper firstly presents the composition, propulsion of wave glider and its applications. And then discuss the status of research on theory and numerical calculation. Some advancing front of research subjects of the mutibody system dynamics and hydrodynamic of wave glider are analyzed, and current problems and some suggestions for future research.
2016,38(8): 1-4 收稿日期:2016-1-15
DOI:10.3404/j.issn.1672-7619.2016.08.001
分类号:V277;TV131.2
基金项目:国家高技术研究发展计划资助项目(2014AA09A507)
作者简介:杨富茗(1987-),男,博士研究生,研究方向为波浪滑翔机水动力特性计算与混合驱动高效螺旋桨设计。
参考文献:
[1] MANLEY J, WILLCOX S. The wave glider: a new concept for deploying ocean instrumentation[J]. IEEE instrumentation and measurement magazine, 2010, 13(6): 8-13.
[2] VILLAREAL T A, WILSON C. A comparison of the Pac-X trans-pacific wave glider data and satellite data (MODIS, Aquarius, TRMM and VⅡRS)[J]. PLoS one, 2014, 9(3): e92280.
[3] NGO P, DAS J, OGLE J, et al. Predicting the speed of a wave glider autonomous surface vehicle from wave model data[C]//Proceedings of IEEE/RSJ international conference on intelligent robots and systems. Chicago, IL: IEEE, 2014: 2250-2256.
[4] MULLISON J, SYMONDS D, TRENAMAN N. ADCP data collected from a liquid robotics wave glider?[C]//Proceedings of the 2011 IEEE/OES/ 10th current, waves and turbulence measurement. Monterey, CA: IEEE, 2011: 266-272.
[5] BINGHAM B, KRAUS N, HOWE B, et al. Passive and active acoustics using an autonomous wave glider[J]. Journal of field robotics, 2012, 29(6): 911-923.
[6] MAQUEDA M A M, PENNA N T, WILLIAMS S D P, et al. Water surface height determination with a GPS wave glider: a demonstration in Loch Ness, Scotland[J]. Journal of atmospheric and oceanic technology, 2016, 33(6): 1159-1168.
[7] NGO P, AL-SABBAN W H, THOMAS J, et al. An analysis of regression models for predicting the speed of a wave glider autonomous surface vehicle[C]//Proceedings of the 2013 Australasian conference on robotics & automation. Sydney, NSW, Australia: Australasian Robotics and Automation Association, University of New South Wales, 2013.
[8] KRAUS N, BINGHAM B. Estimation of wave glider dynamics for precise positioning[C]//Proceedings of the OCEANS'11 MTS/IEEE KONA. Waikoloa, HI: IEEE, 2011.
[9] KRAUS N D. Wave glider dynamic modeling, parameter identification and simulation[D]. Honolulu: University of Hawaii at Manoa, 2012.
[10] QI Z F, LIU W X, JIA L J, et al. Dynamic modeling and motion simulation for wave glider[J]. Applied Mechanics and Materials, 2013, 397-400: 285-290.
[11] JIA L J, ZHANG X M, QI Z F, et al. Hydrodynamic analysis of submarine of the wave glider[J]. Advanced Materials Research, 2013, 834-836: 1505-1511.
[12] 贾立娟. 波浪动力滑翔机双体结构工作机理与动力学行为研究[D]. 天津: 国家海洋技术中心, 2014. JIA Li-juan. Study of operation principle of two-part architecture and dynamic behavior of wave glider[D]. Tianjin: National Marine Technology Center, 2014.
[13] ELHADAD A, DUAN W Y, DENG R. A computational fluid dynamics method for resistance prediction of the floating hull of wave glider[J]. Advanced Materials Research, 2014, 936: 2114-2119.
[14] ELHADAD A, DUAN W Y, DENG R. Comparative investigation of an automated oceanic wave surface glider robot influence on resistance prediction using CFD method[J]. Applied Mechanics and Materials, 2015, 710: 91-97.
[15] TIAN B Q, YU J C, ZHANG A Q. Dynamic modeling of wave driven unmanned surface vehicle in longitudinal profile based on D-H approach[J]. Journal of Central South University, 2015, 22(12): 4578-4584.
[16] TIAN B Q, YU J C, ZHANG A Q, et al. Dynamics analysis of wave-driven unmanned surface vehicle in longitudinal profile[C]//OCEANS 2014 - TAIPEI. Taipei: IEEE, 2014.
[17] TIAN B Q, YU J C, ZHANG A Q. Lagrangian dynamic modeling of wave-driven unmanned surface vehicle in three dimensions based on the D-H approach[C]//Proceedings of IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang: IEEE, 2015: 8-12.
[18] 田宝强, 俞建成, 张艾群, 等. 波浪驱动无人水面机器人运动效率分析[J]. 机器人, 2014, 36(1): 43-48, 68. TIAN Bao-qiang, YU Jian-cheng, ZHANG Ai-qun, et al. Analysis on movement efficiency for wave driven unmanned surface vehicle[J]. Robot, 2014, 36(1): 43-48, 68.
[19] ZHENG B H, XU C Y, YAO C L, et al. The effect of attack angle on the performance of wave glider wings[J]. Applied Mechanics and Materials, 2015, 727-728: 587-591.
[20] 李小涛. 波浪滑翔器动力学建模及其仿真研究[D]. 北京: 中国舰船研究院, 2014. LI Xiao-tao. Dynamic model and simulation study based on the wave glider[D]. Beijing: China Ship Research Institute, 2014.
[21] 李小涛, 王理, 吴小涛, 等. 波浪滑翔器原理和总体设计[J]. 四川兵工学报, 2013, 34(12): 128-131. LI Xiao-tao, WANG Li, WU Xiao-tao, et al. Principle and system design of a wave glider[J]. Journal of Sichuan Ordnance, 2013, 34(12): 128-131.