以波纹夹芯杂交夹层板(Hybrid Sandwich Plate with Corrugated-Cores, HSP)为研究对象,建立气-液-固三相数值模型,对结构在不同撞水速度下(1~10 m/s)动力响应特性进行数值计算分析。首先将其与相同质量的无填充轻质波纹夹芯夹层板(Light Weight Corrugated-Core Sandwich Plates, LWCCSP)在入水砰击下的非线性力学行为进行对比,分析探讨 2 种结构的能量吸收特点以及砰击压力和变形的分布规律,同时研究波纹夹芯杂交夹层板主要设计参数对其抗砰击性能的影响。分析结果表明,波纹夹芯杂交夹层板较同质量的无填充轻质波纹夹芯夹层板具有更好的抗砰击性能;在一定范围内,增加触水面板厚度及芯层厚度对提升波纹夹芯杂交夹层板的抗砰击性能有积极作用,且增加芯层厚度效果更为显著。
The dynamic characteristics of Hybrid Sandwich Plate with Corrugated-Cores (HSP) under different waterimpact velocities (1 m/s-10 m/s) considitions are studied in this paper. The computational models of multi-physics (air-water-solid) are built using finite element method (FEM). The energy absorptionslamming pressure and structure deformation of the HSP models are investigated, and compared to those of Light Weight Corrugated-Core Sandwich Plates (LWCCSP) models with the same mass. Furthermore, the influences of key parameters of HSP are studied. The results show that HSP has better anti-slamming performance compared to that of LWCCSP. Within a certain range, thickening the bottom plate and corrugated-core, especially the corrugated-core, has a positive role in improving the anti-slamming properties of HSP.
2016,38(8): 11-17 收稿日期:2016-2-22
DOI:10.3404/j.issn.1672-7619.2016.08.003
分类号:U661.42
基金项目:国家自然科学基金资助项目(51279065)
作者简介:贺梦豪(1991-),男,硕士研究生,研究方向为船舶与海洋结构物设计与造。
参考文献:
[1] 莫立新, 王辉, 蒋彩霞, 等. 变刚度楔形体板架落体砰击试验研究[J]. 船舶力学, 2011, 15(4): 394-401. MO Li-xin, WANG Hui, JIANG Cai-xia, et al. Study on dropping test of wedge grillages with various types of stiffeness[J]. Journal of Ship Mechanics, 2011, 15(4): 394-401.
[2] LIANG C C, YANG M F, WU P W. Optimum design of metallic corrugated core sandwich panels subjected to blast loads[J]. Ocean Engineering, 2001, 28(7): 825-861.
[3] KUJALA P, KLANAC A. Steel sandwich panels in marine applications[J]. Brodogradnja, 2005, 56(4): 305-314.
[4] YAN L L, YU B, HAN B, et al. Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores[J]. Composites Science and Technology, 2013, 86: 142-148.
[5] VAZIRI A, XUE Z, HUTCHINSON J W. Metal sandwich plates with polymer foam-filled cores[J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 97-127.
[6] 田培培, 赵桂平, 卢天健. 具有填充材料的金属格栅夹层板在高速冲击下动态响应的数值分析[J]. 应用力学学报, 2009, 26(4): 788-792. TIAN Pei-pei, ZHAO Gui-ping, LU Tian-jian. Numerical analysis for dynamic response of sandwich plates with lattice and filling under impact loading[J]. Chinese Journal of Applied Mechanics, 2009, 26(4): 788-792.
[7] 于渤, 韩宾, 徐雨, 等. 空心及PMI泡沫填充铝波纹板夹芯梁冲击性能的数值研究[J]. 应用力学学报, 2014, 31(6): 906-910. YU bo, HAN Bin, XU Yu, et al. Numerical study of the impact response of sandwich beams with empty or PMI foam-filled corrugated core[J]. Chinese Journal of Applied Mechanics, 2014, 31(6): 906-910.
[8] RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading[J]. International Journal of Solids and Structures, 2006, 43(6): 1746-1763.
[9] HALLQUIST J O. LS-DYNA theoretical manual[M]. California: Livermore Software Technology Corporation, 1998.
[10] WU H, LIU J, ZHANG P, et al. Numerical analysis on dynamic responses of hybrid sandwich structures with V-type corrugated cores subjected to water impact[C]//OCEANS 2015- Washington. Washington, DC: IEEE, 2015: 1-5.
[11] FUJITA Y. On the impulsive pressure of circular plate falling upon water-surface (the 2nd. report)[J]. Journal of Zosen Kiokai, 1954, 1954(94): 105-110.