建立二维楔形体入水模型,验证入水砰击仿真方法可靠性,对集装箱船体进行全船体建模,导入船体运动参数,增加船体的纵摇运动,采用一般耦合算法(General coupling),流体域用 Euler 单元模拟,船体设为刚体,划分为 Lagrange 有限元网格,对船体进行入水仿真。对比不同工况下的结果表明:全船模拟时船型纵向斜升角会发生变化,导致航速对船首入水砰击压力的影响较大,随着航速的增加,入水砰击压力变大,同时航速还会使砰击压力峰值位置发生变化。
The impact of one rigid wedge subject is calculated to verify the reliability of the slamming simulation method. Modeling a whole ship, import the ship's motion parameters, including pitching motion. In simulation, the fluid is represented by an Euler formulation with 8-nodes brick elements, the ship structure is represented by a Lagrange grid, and simulate the whole ship model's slamming problems by using General coupling. The results show that: In case of high speed, moderate sea conditions, the bow's slamming pressure is higher than the other conditions; the longitudinal deadrise angle of the bow will be changed in whole model simulation, resulting in a greater influences the ship speed to the bow's slamming pressures, and the higher of ship speed, the higher of the bow's slamming pressure and the ship speed also makes slamming pressure peak position changes.
2016,38(8): 23-28 收稿日期:2015-9-17
DOI:10.3404/j.issn.1672-7619.2016.08.005
分类号:U661
基金项目:航空基金资助项目(2013102221284811)
作者简介:肖考考(1991-),男,硕士研究生,研究方向为舰船流体动力性能。
参考文献:
[1] 戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2007.
[2] 向红贵. 高速船甲板上浪的数值模拟研究[D]. 上海: 上海交通大学, 2008. XIANG Hong-gui. Numerical simulation of green water occurrence of high speed vessels[D]. Shanghai: Shanghai Jiaotong University, 2008.
[3] 文志飞. 船舶砰击载荷的计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. WEN Zhi-fei. A computational method for slamming loads of ship[D]. Harbin: Harbin Engineering University, 2010.
[4] 孙峰, 吴卫国. 江海直达船船首入水砰击研究[J]. 交通科技, 2011(5): 114-116. SUN Feng, WU Wei-guo. Impacting study on the water entry of the bow of river-sea ship[J]. Transportation Science & Technology, 2011(5): 114-116.
[5] 刘正国, 吴卫国, 潘晋, 等. 基于船波相对运动的船首砰击仿真方法[J]. 中国舰船研究, 2013, 8(6): 20-26. LIU Zheng-guo, WU Wei-guo, PAN Jin, et al. Simulation method for the slamming problems of ship bows based on the relative motion between hulls and wave surfaces[J]. Chinese Journal of Ship Research, 2013, 8(6): 20-26.
[6] 胥飞, 刘桦. 艏外飘型船体入水砰击的二维SPH模拟[J]. 水动力学研究与进展, 2013, 28(5): 585-590. XU Fei, LIU Hua. Numerical simulation of 2-D bow flare slamming using SPH method[J]. Chinese Journal of Hydrodynamics, 2013, 8(5): 585-590.
[7] AARSNES J V. Drop test with ship sections-effect of roll angle[R]. Marintek Report, Trondheim: Norwegian Marine Technology Research Institute, 1996.
[8] ARAI M, TASAKI R. A numerical study of water entrance of two-dimensional wedges-effect of gravity, spray generation and vertical load[C]//Proceedings of the 3rd International Symposium on Practical Design of Ships and Mobile Units. Trondheim, Norway: Norwegian Institute of Technology, 1987.
[9] 陈震, 冯永军, 肖熙. 大型集装箱船舷侧外飘砰击特性研究[J]. 船海工程, 2011, 40(3): 1-4, 9. CHEN Zhen, FENG Yong-jun, XIAO Xi. Study on flare impact characteristics of large container ships[J]. Ship & Ocean Engineering, 2011, 40(3): 1-4.
[10] AQUELET N, SOULI M, OLOVSSON L. Euler-Lagrange coupling with damping effects: application to slamming problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(1/3): 110-132.
[11] STAVOVY A B, CHUANG S L. Analytical determination of slamming pressures for high-speed vehicles in waves[J]. Journal of Ship Research, 1967, 20(4): 190-198.
[12] Wagner H. Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.