针对平板底部直接喷气形成气液混合流的复杂情况,采用 Mixture 模型与 RANS 方程相结合的方法建立了气液混合流粘性流场数值计算模型。通过对 4 种湍流模型、4 种网格、3 种壁面处理方法进行组合,形成了 8种不同的数值计算方法,分析了壁面函数、壁面第 1 层网格、湍流模型等对数值计算结果的影响,并与试验结果进行对比,获得了可有效模拟气液混合流的数值模型。研究结果表明:采用 RNG k-ε 湍流模型、标准壁面函数、第 1层网格 1 mm、y + 为 31~35 的计算方案,所得结果可用于平底船底部气液混合流分析。
In order to investigate the complexity of gas-liquid mixing under different condition of flat plate, a method with the combination of RANS equations and Mixture model is proposed for the viscous-flow calculation of a large flat bottom ship. There are eight different numerical calculation method formed by a combination 4 kinds of turbulence models, grid, and 3 kinds of wall treatment. The influence of wall function, the first layer of mesh wall and turbulence models for numerical results was analyzed. Experimental results were compared with the numerical study. The results show that: RNG k-ε turbulence model, standard wall function, 1mm first layer of mesh, y + for the calculation of 31 to 35, the results can be used for mixed-flow analysis.
2016,38(8): 47-51 收稿日期:2015-9-11
DOI:10.3404/j.issn.1672-7619.2016.08.010
分类号:U631.1
基金项目:工信部高技术船舶科研资助项目([2011]530);高性能船舶技术教育部重点实验室开放基金资助项目(2013033102)
作者简介:吴浩(1987-),男,博士研究生,研究方向为船舶水动力学。
参考文献:
[1] CHOI J K, HSIAO C T, CHAHINE G L. Numerical studies on the hydrodynamic performance and the startup stability of high speed ship hulls with air plenums and air tunnels[C]//Proceedings of the Ninth International Conference on Fast Sea Transportation FAST2007. Shanghai, China, 2007: 476-484.
[2] KIM D, MOIN P. Direct numerical Simulation of air layer drag reduction over a backward-facing step[C]//Proceedings of the 63rd annual Meeting of the APS Division of Fluid Dynamics. Long Beach, California: American Physical Society, 2010: 351-363.
[3] LIEM H C, TODA Y, SANADA Y. A consideration on drag reduction by air lubrication using integral type boundary layer computation[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2011, 13: 59-65.
[4] LI Y B, WU X Y, MA Y, et al. A method based on potential theory for calculating air cavity formation of an air cavity resistance reduction ship[J]. Journal of Marine Science and Application, 2008, 7(2): 98-101.
[5] 吴晓宇. 气泡船大尺寸多凹槽稳定气穴形成理论研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[6] 董文才, 郭日修, 朱凤荣, 等. 平板湍流边界层内气泡流流动实验研究[J]. 海军工程大学学报, 2001, 13(3): 34-37.
[7] 郑晓伟, 王家楣, 曹春燕. 二维船舶微气泡减阻数值模拟[J]. 船舶工程, 2005, 27(6): 15-18.
[8] 蔡红玲. 高速气泡船流场数值模拟[D]. 武汉: 武汉理工大学, 2008.
[9] 杨鹏. 气泡船三维粘性绕流的数值模拟[D]. 武汉: 武汉理工大学, 2008.
[10] 曹春燕. 船舶微气泡减阻数值模拟[D]. 武汉: 武汉理工大学, 2003.
[11] 荒賀浩一, 松井良輔, 脇本辰郎, 等. 界面活性剤水溶液の水平円管内流れに及ぼす微細気泡の影響[J]. 実験力学, 2010, 10(3): 304-311.
[12] 梁志勇, 陈池. 微气泡对平板摩擦阻力影响的分析[J]. 上海大学学报(自然科学版), 2002, 8(3): 267-272.
[13] FELTON K, LOTH E. Diffusion of spherical bubbles in a turbulent boundary layer[J]. International Journal of Multiphase Flow, 2002, 28(1): 69-92.
[14] 郭峰, 欧勇鹏, 董文才, 等. 平板微气泡减阻预报及影响因素研究[J]. 中国造船, 2008, 49(S): 66-74.
[15] MORIGUCHI Y, KATO H. Influence of microbubble diameter and distribution on frictional resistance reduction[J]. Journal of Marine Science and Technology, 2002, 7(2): 79-85.