潜艇倒航操纵性研究是潜艇操纵性领域的难点问题。在调研和查阅了大量文献资料的基础上,综述了国内外潜艇倒航操纵性研究的发展概况,着重对潜艇倒航操纵运动数学模型、基于CFD的数值操纵水池技术和潜艇倒航运动操纵性能分析方法等方面存在的问题进行讨论,分析了基于数值操纵水池的潜艇倒航操纵性研究的可行性,提出了基于数值操纵水池的潜艇倒航操纵性研究的基本方法、需要解决的重点问题及关键技术。
The study on the manoeuvrability of submarine under sail astern is a difficult issue in the field of submarine's manoeuvrability. The summary of the study on the manoeuvrability of submarine under sail astern was presented based on plenty of references in this paper. The mathematical model development, the hydrodynamic coefficients compute based on CFD and motion analysis for a submarine under sail astern were introduced in detail, and the related current problems were discussed. Finally, the procedure studying on the manoeuvrability of submarine under sail astern was put up. The key problems and techniques were suggested that should be studied further in future.
2016,38(9): 1-8,19 收稿日期:2015-12-14
DOI:10.3404/j.issn.1672-7619.2016.09.001
分类号:U661.3
基金项目:国家自然科学基金资助项目(51179196)
作者简介:戴余良(1966-),男,博士,副教授,主要从事船舶操纵运动建模、智能控制与实时仿真研究。
参考文献:
[1] 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 1995.
[2] GERTLER M, HAGEN G R. Standard equations of motion for submarine simulation[R]. AD 653861. Hoboken, NJ: Stevens Institute of Technology, 1967.
[3] FELDMAN J. DTNSRDC revised standard submarine equation of motion[R]. DTNSRDC/SPD-0393-09. Bethesda, MD: David W. Taylor Naval Ship Research and Development Center, 1979.
[4] BOHLMANN H J. An analytical method for the prediction of submarine maneuverability[C]//Warship'91 Symposium on Naval Submarines 3. London:[s.n.], 1991.
[5] ARJM L. Progress towards a rational method of predicting submarine manoeuvrability[C]//The Proceedings of the RINA International Symposium. London:[s.n.], 1983.
[6] 邹早建. 船舶操纵性研究进展[C]//第六届船舶力学学术委员会全体会议专集. 北京: 中国造船工程学会, 2006: 54-67.
[7] 贾欣乐, 杨盐生. 船舶运动数学模型[M]. 大连: 大连海事大学出版社, 1999.
[8] SMALLWOOD D A, WHITCOMB L L. Adaptive identification of dynamically positioned underwater robotic vehicles[J]. IEEE Transactions on Control Systems Technology, 2003, 11(4): 505-515.
[9] KIM J, KIM K, CHOI H S, et al. Estimation of hydrodynamic coefficients for an AUV using nonlinear observers[J]. IEEE Journal of Oceanic Engineering, 2002, 27(4): 830-840.
[10] INDIVERI G. Modeling and identification of underwater robotic systems[D]. Genova, Italy: Università di Genova, 1998.
[11] HESS D, FALLER W. Using recursive neural networks for blind predictions of submarine manoeuvres[C]//24th Symposium on Naval Hydrodynamics. Fukuoka, Japan:[s.n.], 2002.
[12] 陈玮琪, 颜开, 史淦君, 等. 水下航行体水动力参数智能辨识方法研究[J]. 船舶力学, 2007, 11(1): 40-46.CHEN Wei-qi, YAN Kai, SHI Gan-jun, et al. Research of hydrodynamic parameter identification for underwater vehicle using swarm intelligence algorithm[J]. Journal of Ship Mechanics, 2007, 11(1): 40-46.
[13] 张晶. 潜艇运动建模及简化技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[14] 张楠, 杨仁友, 沈泓萃, 等. 数值拖曳水池与潜艇快速性CFD模拟研究[J]. 船舶力学, 2011, 15(1/2): 17-24.ZHANG Nan, YANG Ren-you, SHEN Hong-cui, et al. Numerical towing tank and CFD simulation for submarine powering performance[J]. Journal of Ship Mechanics, 2011, 15(1/2): 17-24.
[15] 涂海文, 孙江龙. 基于CFD的潜艇阻力及流场数值计算[J]. 舰船科学技术, 2012, 34(3): 19-25.TU Hai-wen, SUN Jiang-long. Numerical analysis of resistance and flow field of submarine based on CFD[J]. Ship Science and Technology, 2012, 34(3): 19-25.
[16] 钱永峰. 浅水中作斜航运动船体粘性绕流计算[D]. 武汉: 华中科技大学, 2007.
[17] 田喜民. 船舶操纵运动粘性水动力数值与试验研究[D]. 上海: 上海交通大学, 2008.
[18] 田喜民, 邹早建, 王化明. KVLCC2船模斜航运动粘性流场及水动力数值计算[J]. 船舶力学, 2010, 14(8): 834-840.TIAN Xi-min, ZOU Zao-jian, WANG Hua-ming. Computation of the viscous flow and hydrodynamic forces on a KVLCC2 model in oblique motion[J]. Journal of Ship Mechanics, 2010, 14(8): 834-840.
[19] 邱辽原. 潜艇粘性流场的数值模拟及其阻力预报的方法研究[D]. 武汉: 华中科技大学, 2006.
[20] 郭真祥, 陈彦均, 杨名梧. 以计算流体力学方法解析潜艇稳态斜航之流体动力系数[C]//第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集. 北京: 海洋出版社, 2008: 811-816.
[21] 刘帅. 潜艇操纵运动水动力数值研究[D]. 上海: 上海交通大学, 2011.
[22] 柏铁朝, 梁中刚, 周轶美, 等. 潜艇操纵性水动力数值计算中湍流模式的比较与运用[J]. 中国舰船研究, 2010, 5(2): 22-28.BAI Tie-chao, LIANG Zhong-gang, ZHOU Yi-mei, et al. Comparison and application of turbulence modes in submarine maneuvering hydrodynamic forces computation[J]. Chinese Journal of Ship Research, 2010, 5(2): 22-28.
[23] 林小平. 潜艇水动力计算及型线生成研究[D]. 武汉: 武汉理工大学, 2005.
[24] ZHAO Jin-xin, SU Yu-min, JU Lei, et al. Hydrodynamic performance calculation and motion simulation of an AUV with appendages[C]//Proceedings of 2011 International Conference on Electronic and Mechanical Engineering and Information Technology. Harbin: IEEE, 2011, 2: 657-660.
[25] 黄成涛. 浅水中作回转运动船体粘性绕流计算[D]. 武汉: 华中科技大学, 2007.
[26] WANG H M, ZOU Z J, YAO J X. RANS simulation of the viscous flow around a turning ship in shallow water[C]//Proceedings of MARSIM 2009. Panama City, Panama, 2009.
[27] 詹成胜, 刘祖源, 程细得. 潜艇水动力系数数值计算[J]. 船海工程, 2008, 37(3): 1-4.ZHAN Cheng-sheng, LIU Zu-yuan, CHENG Xi-de. Numerical calculation of the submarine's hydrodynamic coefficients[J]. Ship & Ocean Engineering, 2008, 37(3): 1-4.
[28] 卢锦国, 梁中刚, 吴方良, 等. 水下航行体回转水动力数值计算研究[J]. 中国舰船研究, 2011, 6(6): 8-12, 27.LU Jin-guo, LIANG Zhong-gang, WU Fang-liang, et al. Numerical calculation on hydrodynamic performance of the submerged vehicle in turning motion[J]. Chinese Journal of Ship Research, 2011, 6(6): 8-12, 27.
[29] YUE L, FENG D K, ZHANG Z G, et al. Development of numerical method for prediction of maneuvering performance of marine vehicle[J]. Applied Mechanics and Materials, 2011, 44-47: 929-934.
[30] OBREJA D, NABERGOJ R, CRUDU L, et al. Identification of hydrodynamic coefficients for manoeuvring simulation model of a fishing vessel[J]. Ocean Engineering, 2010, 37(8/9): 678-687.
[31] PHILLIPS A B, TURNOCK S R, FURLONG M. Evaluation of manoeuvring coefficients of a self-propelled ship using a blade element momentum propeller model coupled to a Reynolds averaged Navier Stokes flow solver[J]. Ocean Engineering, 2009, 36(15/16): 1217-1225.
[32] 庞永杰, 杨路春, 李宏伟, 等. 潜体水动力导数的CFD计算方法研究[J]. 哈尔滨工程大学学报, 2009, 30(8): 903-908.PANG Yong-jie, YANG Lu-chun, LI Hong-wei, et al. Approaches for predicting hydrodynamic characteristics of submarine objects[J]. Journal of Harbin Engineering University, 2009, 30(8): 903-908.
[33] 杨路春, 庞永杰, 黄利华, 等, 潜艇PMM实验的CFD仿真技术研究[J]. 舰船科学技术, 2009, 31(12): 12-17.YANG Lu-chun, PANG Yong-jie, HUANG Li-hua, et al. Study of the CFD approach to simulate PMM experiments of submarine[J]. Ship Science and Technology, 2009, 31(12): 12-17.
[34] 李冬荔. 粘性流场中船舶操纵水动力导数计算[J]. 哈尔滨工程大学学报, 2010, 31(4): 421-427.LI Dong-li. Computation of hydrodynamic derivatives related to ship maneuverability in viscous flows[J]. Journal of Harbin Engineering University, 2010, 31(4): 421-427.
[35] 石爱国, 闻虎, 李理, 等. 船舶浅水水动力导数的数值计算[J]. 中国航海, 2011, 34(3): 69-73, 83.SHI Ai-guo, WEN Hu, LI Li, et al. Computation of hydrodynamic derivatives for ships in shallow water[J]. Navigation of China, 2011, 34(3): 69-73, 83.
[36] OH K J, KANG S H. Numerical calculation of the viscous flow around a propeller shaft configuration[J]. International Journal for Numerical Methods in Fluids, 1995, 21(1): 1-13.
[37] 肖昌润, 刘巨斌, 朱建华, 等. DARPA2潜艇模型定常绕流水动力数值计算[J]. 华中科技大学学报(自然科学版), 2007, 35(8): 115-118.XIAO Chang-run, LIU Ju-bin, ZHU Jian-hua, et al. Numerical computation of hydrodynamic force of DARPA2 submarine model[J]. Journal of Huazhong University of Science and Technology (Nature Science), 2007, 35(8): 115-118.
[38] 张楠, 沈泓萃, 姚惠之. 用雷诺应力模型预报不同雷诺数下的潜艇绕流[J]. 船舶力学, 2009, 13(5): 688-696.ZHANG Nan, SHEN Hong-cui, YAO Hui-zhi. Prediction of flow around submarine at different Reynolds numbers with Reynolds stress model[J]. Journal of Ship Mechanics, 2009, 13(5): 688-696.
[39] SHEARER M P. Simulation and evaluation of marine propeller crashback through computational fluid dynamics[R]. Trident Scholar Project Report No. 358.[S.l.]: United States Naval Academy, 2007.
[40] 寇冠元, 殷洪, 林兆伟, 等. 基于数值水池的潜艇横摇运动仿真[J]. 舰船科学技术, 2012, 34(3): 26-31.KOU Guan-yuan, YIN Hong, LIN Zhao-wei, et al. Simulation of submarine rolling based on the numerical tank[J]. Ship Science and Technology, 2012, 34(3): 26-31.
[41] 韦喜忠, 黄振宇, 洪方文. 基于非结构网格的螺旋桨周围流场大涡模拟[J]. 水动力学研究与进展(A辑), 2008, 23(4): 419-425.WEI Xi-zhong, HUANG Zhen-yu, HONG Fang-wen. Large eddy simulation of flowfield about marine propeller on unstructured meshes[J]. Chinese Journal of Hydrodynamics, 2008, 23(4): 419-425.
[42] 黄振宇, 缪国平. 大涡模拟在水下航行体周围黏性流场计算中的初步应用[J]. 水动力学研究与进展A辑, 2006, 21(2): 190-197.HUANG Zhen-yu, MIAO Guo-ping. Large eddy simulation of incompressible viscous flow past underwater configuration[J]. Journal of Hydrodynamics, 2006, 21(2): 190-197.
[43] 孙铭泽, 王永生, 杨琼方. 潜艇操纵性数值模拟中雷诺数的影响分析[J]. 哈尔滨工程大学学报, 2012, 33(11): 1334-1340.SUN Ming-ze, WANG Yong-sheng, YANG Qiong-fang. Analysis of the Reynolds number influence on hydrodynamic coefficients in numerical simulation of submarine maneuverability[J]. Journal of Harbin Engineering University, 2012, 33(11): 1334-1340.
[44] BRIDGES D H, BAGLEY J W, CASH A C, et al. Investigations of scaling effects on submarine propeller and stern boundary layer flows[R]. Final report. Mississippi: Mississippi State University, 2004.
[45] 操盛文, 吴方良. 尺度效应对全附体潜艇阻力数值计算结果的影响[J]. 中国舰船研究, 2009, 4(1): 33-37, 42.CAO Sheng-wen, WU Fang-liang. Investigation of scaling effects on numerical computation of submarine resistance[J]. Chinese Journal of Ship Research, 2009, 4(1): 33-37, 42.
[46] 张楠, 沈泓萃, 姚惠之. 阻力和流场的CFD不确定度分析探讨[J]. 船舶力学, 2008, 12(2): 211-224.ZHANG Nan, SHEN Hong-cui, YAO Hui-zhi. Uncertainty analysis in CFD for resistance and flow field[J]. Journal of Ship Mechanics, 2008, 12(2): 211-224.
[47] 姚震球, 杨春蕾, 高慧. 潜艇流场数值模拟及不确定度分析[J]. 江苏科技大学学报(自然科学版), 2009, 23(2): 95-98.YAO Zhen-qiu, YANG Chun-lei, GAO Hui. Numerical simulation of turbulent flows around a submarine and its uncertainty analysis[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2009, 23(2): 95-98.
[48] 张涵信. 关于CFD计算结果的不确定度问题[J]. 空气动力学学报, 2008, 26(1): 47-49, 90.ZHANG Han-xin. On the uncertainty about CFD results[J]. Acta Aerodynamica Sinica, 2008, 26(1): 47-49, 90.
[49] ITTC-quality manual procedure 4.9-04-02-01[S]. CFD general uncertainty analysis in CFD examples for resistance and flow. 22nd ITTC, 1999.
[50] 朱德祥, 张志荣, 吴乘胜, 等. 船舶CFD不确定度分析及ITTC临时规程的初步应用[J]. 水动力学研究与进展A辑, 2007, 22(3): 363-370.ZHU De-xiang, ZHANG Zhi-rong, WU Cheng-sheng, et al. Uncertainty analysis in ship CFD and the primary application of ITTC procedures[J]. Journal of Hydrodynamics, 2007, 22(3): 363-370.
[51] 毕毅, 郭峰, 肖昌润, 等. 某特殊船型的操纵性模型试验研究[J]. 船舶工程, 2008, 30(2): 9-12.BI Yi, GUO Feng, XIAO Chang-run, et al. Study on the model test of maneuverability of certain specific ship type[J]. Ship Engineering, 2008, 30(2): 9-12.
[52] 郭国平. 船舶倒航舵效及操纵[J]. 武汉交通科技大学学报, 1997, 21(3): 323-327.
[53] 徐亦凡, 余远高, 刘百顺. 关于单螺旋桨潜艇的倒车偏航分析[J]. 潜艇学术研究, 1999(2): 25-26.
[54] 陆冬青, 芮震峰, 石爱国, 等. 单螺旋桨舰船倒航性能研究[C]//中国航海学会2003年度学术交流会论文集专刊. 珠海: 中国航海学会, 2003: 90-93.
[55] 倪刚, 林俊兴. 潜艇倒车倒航操纵性能分析[J]. 舰船科学技术, 2012, 34(10): 41-44.NI Gang, LIN Jun-xing. The analysis of maneuverability of the submarine's reversing sailing[J]. Ship Science and Technology, 2012, 34(10): 41-44.
[56] 汤正兵, 朱军, 陈强. 扁平潜器前进与倒航稳定性评估[J]. 海军工程大学学报, 2005, 17(4): 97-103.TANG Zheng-bing, ZHU Jun, CHEN Qiang. Stability evaluation for submersible with elliptical section in forward and back maneuvers[J]. Journal of Naval University of Engineering, 2005, 17(4): 97-103.
[57] 吴秀恒, 刘祖源, 施生达, 等. 船舶操纵性[M]. 北京: 国防工业出版社, 2005.
[58] 戴余良, 王长湖, 苗海, 等. 潜艇水下运动稳定性非线性分析研究[J]. 船舶力学, 2011, 15(8): 844-852.DAI Yu-liang, WANG Chang-hu, MIAO hai, et al. Study on nonlinear analysis of motion stability of submarines under water[J]. Journal of Ship Mechanics, 2011, 15(8): 844-852.
[59] FARCY D. Maneuverability of submarines[C]//Warship'99: naval submarine 6. London, UK:[s.n.], 1999.
[60] 张伟, 胡海岩. 非线性动力学理论与应用的新进展[M]. 北京: 科学出版社, 2009.