通过对潜艇六自由度空间运动方程进行分析,得到了直航阻力运动、垂直面变漂角运动、水平面变漂角运动的空间运动方程。利用Suboff模型,基于刚性网格法,通过设定计算域的运动形式,实现了潜艇直航阻力运动、垂直面变漂角运动、水平面变漂角运动的数值模拟,通过对计算结果进行拟合得到了线性水动力系数和非线性水动力系数,通过与相关试验结果进行对比可知,计算误差在7%左右。
Through analysis of submarine six degrees of freedom space motion equation, the direct resistance movement floated, vertical motion, horizontal angle of the space motion equation of angular motion. SUBOFF model, based on the rigid grid method, through setting calculation domain form of exercise, has realized the submarine direct resistance movement, vertical plane change drift angle motion, the horizontal drift Angle motion of the numerical simulation, based on the calculation results for fitting the hydrodynamic coefficient of linear and nonlinear hydrodynamic coefficients, by comparing with relevant experiment results, the calculation error is about 7%.
2016,38(9): 65-68,73 收稿日期:2016-6-12
DOI:10.3404/j.issn.1672-7619.2016.09.012
分类号:U675.6
作者简介:刘瑞杰(1987-),男,研究方向为潜艇操纵性能。
参考文献:
[1] 肖昌润, 刘瑞杰, 许可, 等. 潜艇旋臂回转试验数值模拟[J]. 江苏科技大学(自然科学版), 2014, 28(4): 313-316.XIAO Chang-run, LIU Rui-jie, XU Ke, et al. Simulation for submarine rotating-arm tests[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2014, 28(4): 313-316.
[2] 刘志华, 熊鹰, 韩宝玉. 潜艇流场数值计算网格与湍流模型选取[J]. 华中科技大学学报(自然科学版), 2009, 39(7): 98-101.LIU Zhi-hua, XIONG Ying, HAN Bao-yu. Computational grid and turbulent model for calculating submarine viscous flow field[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(7): 98-101.
[3] 孙铭泽, 王永生, 张志宏, 等. 基于网格变形技术的全附体潜艇操纵性计算[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(2): 420-424.SUN Ming-ze, WANG Yong-sheng, ZHANG Zhi-hong, et al. Numerical simulation of submarine maneuverability based on mesh deformation technology[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2013, 37(2): 420-424.
[4] 柏铁朝, 梁中刚, 周轶美, 等. 潜艇操纵性水动力数值计算中湍流模式的比较与运用[J]. 中国舰船研究, 2010, 5(2): 22-28.BAI Tie-chao, LIANG Zhong-gang, ZHOU Yi-mei, et al. Comparison and application of turbulence modes in submarine maneuvering hydrodynamic forces computation[J]. Chinese Journal of Ship Research, 2010, 5(2): 22-28.
[5] 吴方良, 吴晓光, 许建, 等. 全附体潜艇三维粘性流场数值计算方法研究[J]. 船舶工程, 2009, 31(4): 8-12.WU Fang-liang, WU Xiao-guang, XU Jian, et al. Study on numerical calculation method of the 3D viscous flow field over a submarine with full appendages[J]. Ship Engineering, 2009, 31(4): 8-12.
[6] 刘帅, 葛彤, 赵敏. 基于源项法的潜艇旋臂试验模拟[J]. 大连海事大学学报, 2011, 37(2): 1-4.LIU Shuai, GE Tong, ZHAO Min. Simulation for submarine rotating-arm test based on added momentum source method[J]. Journal of Dalian Maritime University, 2011, 37(2): 1-4.
[7] GREGORY P A, JOUBERT P N, CHONG M S. Flow over a body of revolution in a steady turn[R]. Rockingham: Defence Science and Technology Organisation Victoria Platform Science Lab, 2004.
[8] TOXOPEUS S, ATSAVAPRANEE P, WOLF E, et al. Collaborative CFD exercise for a submarine in a steady turn[C]//Proceedings of the OMAE ASME 31st International Conference on Ocean Offshore and Arctic Engineering. Rio de Janeiro: ASME, 2012: 761-772.
[9] MARSHALLSAY P G, ERIKSSON A M. Use of computational fluid dynamics as a tool to assess the hydrodynamic performance of a submarine[C]//Australasian Fluid Mechanics Conference. Launceston, 2012.
[10] 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 1995.
[11] PAN Y C, ZHANG H X, ZHOU Q D. Numerical prediction of submarine hydrodynamic coefficients using CFD simulation[J]. Journal of Hydrodynamics, Series B, 2012, 24(6): 840-847.