基于势流理论,采用Hess-Smith方法,对两层介质中运动潜体内波的进行数值计算研究,得到表面波和内波波形与水深佛鲁德数、潜深之间的对应关系。并通过计算无限水深中运动椭球体引起的兴波阻力对自编程序进行验证。
Based potential flow theory, internal waves caused by moving submerged body in two-layer fluid is simulated numerically using Hess-Smith method. The correspondence between patterns of surface wave, internal wave and Froude number of water deep, diving depth is obtained. Program is verified by simulating wave-making resistance of ellipsoid moving in a finite water-depth.
2016,38(9) 60-64 收稿日期:2016-3-31
DOI:10.3404/j.issn.1672-7619.2016.09.011
分类号:U661.1
基金项目:国防预研资助项目(1010401030502)
作者简介:盛立(1984-),男,博士,工程师,研究方向为舰船总体。
参考文献:
[1] ELLER J B, MUNK W H. Internal wave wakes of a body moving in a stratified fluid[J]. Physics of Fluids, 1970, 13(6): 1425-1431.
[2] MILES J W. Internal waves generated by a horizontally moving source[J]. Geophysical Fluid Dynamics, 1971, 2(1): 63-87.
[3] HUGHES B A. The effect of internal waves on surface wind waves 2. Theoretical analysis[J]. Journal of Geophysical Research, 1978, 83(C1): 455-465.
[4] TULIN M P, YAO Y T, WANG P. The generation and propagation of ship internal waves in a generally stratified ocean at high densimetric Froude number, including nonlinear effects[J]. Journal of Ship Research, 2000, 44(3): 197-227.
[5] RADKO T. Ship waves in a stratified fluid[J]. Journal of Ship Research, 2001, 45(1): 1-12.
[6] YEUNG R W, NGUYEN T C. Waves generated by a moving source in a two-layer ocean of finite depth[J]. Journal of Engineering Mathematics, 1999, 35(1/2): 85-107.
[7] WEI G, LE J C, DAI S Q. Surface effects of internal wave generated by a moving source in a two-layer fluid of finite depth[J]. Applied Mathematics and Mechanics, 2003, 24(9): 1025-1040.
[8] 朱伟, 尤云祥, 缪国平, 等. 两层流体中运动物体的兴波特性[J]. 船舶力学, 2004, 8(5): 1-9.ZHU Wei, YOU Yun-xiang, MIAO Guo-ping, et al. Wave-making characteristics of a moving body in a two-layer fluid[J]. Journal of Ship Mechanics, 2004, 8(5): 1-9.
[9] BAL S, KINNAS S A, LEE H. Numerical analysis of 2-D and 3-D cavitating hydrofoils under a free surface[J]. Journal of Ship Research, 2001, 45(1): 34-49.
[10] HE G H. An iterative Rankine BEM for wave-making analysis of submerged and surface-piercing bodies in finite water depth[J]. Journal of Hydrodynamics, 2013, 25(6): 839-847.
[11] BELIBASSAKIS K A, GEROSTATHIS T P, KOSTAS K V, et al. A BEM-isogeometric method for the ship wave-resistance problem[J]. Ocean Engineering, 2013, 60: 53-67.
[12] DOCTORS L J, BECK R F. Convergence properties of the Neumann-Kelvin problem for a submerged body[J]. Journal of Ship Research, 1987, 31(4): 227-234.