电力推进的船舶在恶劣海况下航行时存在较大扰动,螺旋桨不断进出水面,使船舶推进电机的转速和转矩过大从而造成机械损耗。为此,本文提出一种针对恶劣海况的船舶电力推进系统抗过旋控制策略,不同于平静海况的转速控制策略,考虑船桨通风状态以及损失的估算,对损失因子和估算转矩进行分析,验证抗过旋控制的可靠性。
A propeller subject to extreme conditions may experience large load transients due to ventilation and in-andout-of water effects. The controllers designed for normal conditions may then no longer give satisfactory performance. Since torque and power control needs keeping constant, a loss of propeller load torque will lead to severe motor racing. To assure satisfactory performance for all conditions, the anti-spin control strategy for extreme conditions is therefore introduced. Differing from control strategy for normal conditions, the ventilation detection and loss effects are included the Anti-Spin control strategy. Moreover, loss factor and torque calculation are analyzed. The reliability of the anti-spin control strategy is verified.
2016,38(9): 78-82 收稿日期:2016-2-2
DOI:10.3404/j.issn.1672-7619.2016.09.015
分类号:U661.4
基金项目:工信部高技术船舶科研资助项目(工信部联装[2013]411号);威海市大学共建资助项目(2013DXGJ04)
作者简介:汪桐萱(1990-),女,硕士研究生,主要从事船舶电力推进系统的技术研究。
参考文献:
[1] 何琪. 船舶电力推进负载模拟系统研究[J]. 舰船科学技术, 2015, 37(2): 128-131.HE Qi. Research of load simulation system for marine electric propulsion[J]. Ship Science and Technology, 2015, 37(2): 128-131.
[2] 程木军, 孙才勤. 智能PID控制器在船舶发电机电压控制中的应用[J]. 大连海事大学学报, 2006, 32(2): 5-8, 16.CHENG Mu-jun, SUN Cai-qin. A new intelligent PID controller in application to marine generator voltage control system[J]. Journal of Dalian Maritime University, 2006, 32(2): 5-8, 16.
[3] 李勇. 船舶电力推进模糊-PI控制方法[J]. 中国航海, 2014, 37(1): 34-38.LI Yong. A fuzzy-PI control for vessel electric propulsion[J]. Navigation of China, 2014, 37(1): 34-38.
[4] 何新英, 徐曼平. 基于神经元自适应PID船舶电力推进电机控制系统研究[J]. 广东造船, 2013, 32(4): 47-48, 64.HE Xin-ying, XU Man-ping. Research on ship electric propulsion motor control system based on neuron adaptive PID control[J]. Guangdong Shipbuilding, 2013, 32(4): 47-48, 64.
[5] 张桂臣. 复合误差模型自适应船舶控制系统的应用研究[D]. 大连: 大连海事大学, 2009.ZHANG Gui-chen. The study and application of hybrid error adaptive model for ship control systems[D]. Dalian: Dalian Maritime University, 2009.
[6] 郭燚, 郑华耀. 船舶电力推进电机驱动技术研究[J]. 舰船科学技术, 2005, 27(4): 22-26.GUO Yi, ZHENG Hua-yao. Research on vessel electric propulsion motor drives technology[J]. Ship Science and Technology, 2005, 27(4): 22-26.
[7] 张利军, 孟杰, 兰海. 船舶电力系统的非线性鲁棒性控制[M]. 北京: 国防工业出版社, 2011: 40-41.ZHANG Li-jun, MENG Jie, LAN Hai. Nonlinear robust control of ship power systems[M]. Beijing: National Defence Industry Press, 2011: 40-41.
[8] 刘维亭, 李文秀. 舰船电力系统分散鲁棒励磁控制器的研究[J]. 船舶工程, 2005, 25(3): 46-50.LIU Wei-ting, LI Wen-xiu. Decentralized robust excitation controller for improvement of warship power system's stability[J]. Ship Engineering, 2005, 25(3): 46-50.
[9] SMOGELI Ø N. Control of marine propellers-from normal to extreme conditions[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2006.