超高速航行器在水下运动时,其大部分表面被超空泡包裹,构成了一种新的流体动力布局,运动模式和运动特性完全不同于常规水下航行器。为了分析超高速水下航行器运动的稳定性,本文对超空泡生成机理进行研究,给出描述超空泡形态的数学模型,得到不同影响因素作用下超空泡形态的变化规律。为验证超空泡实时生成效果和超高速水下航行器运动过程各种动作功能,采用Vega Prime构建三维虚拟环境,在此基础上设计超空泡视景演示系统,通过ADI仿真系统实时解算超空泡和水下航行器运动数据来驱动超空泡视景系统,逼真地演示超空泡动态生成过程以及水下航行器高速运行轨迹和“空泡+航行器”的相对运动关系等关键技术。
Supercavitation can be viewed as a phenomenon that would help us to break the speed barrier in underwater vehicles. The idea is to make the vehicle surrounded by water vapor while it is traveling underwater. The new hydrodynamic position and motion mode of a high speed supercavitation vehicle is not same as an usual bedewed vehicle. The motion characteristics have also unique behavior. In order to analysis the motion stability, it is necessary to study the forming principle of supercavitation and mathematics model of supercavitation shape was given in this paper. The affecting parameters of supercavitation shape were analyzed and calculated by simulation method.In order to validate the generation function of the supercavitation and movement process of the high speed supercavitation vehicle. It is created by using MultiGen Creator and Vega Prime software platform, a 3D environment model is created by using Skyline software platform. The simulation results show that this virtual simulation about the course of the supercavitation forming and the movement connections between the supercavitation and the vehicle.
2016,38(9): 101-103,135 收稿日期:2016-2-25
DOI:10.3404/j.issn.1672-7619.2016.09.020
分类号:U661
基金项目:国家重点实验室基金资助项目(9140C230403150C23103)
作者简介:邹启明(1979-),男,高级工程师,主要从事水下航行器数学建模与仿真技术研究。
参考文献:
[1] SAVCHENKO Y N. Supercavitation-problems and perspectives[C]//Proceedings of the Fourth International Symposium on Cavitation. Pasadena: California Institute of Technology, 2001.
[2] LOGVINOVICH G V. Hydrodynamics of flows with free boundaries[M]. Kyiv: Naukova Dumka, 1969.
[3] EUTENEUER E A. Further studies into the dynamics of a supercavitating torpedo[D]. Minneapolis: University of Minnesota, 2003.
[4] VANEK B, BOKOR J, BALAS G. Theoretical aspects of high-speed supercavitation vehicle control[C]//Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota, USA: IEEE, 2006.
[5] GOEL A. Control strategies for supercavitating vehicles[D]. Florida: University of Florida, 2002.
[6] GOEL A. Robust control of supercavitating vehicles in the presence of dynamic and uncertain cavity[D]. Florida: University of Florida, 2005.
[7] VLASENKO Y D. Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds[C]//Proceedings of the Fifth International Symposium on Cavitation (CAV2003). Osaka, Japan, 2003.
[8] 褚彦军, 康凤举, 聂卫东, 等. 水下航行器对抗视景仿真系统研究[J]. 舰船电子工程, 2004, 24(5): 18-21.CHU Yan-jun, KANG Feng-ju, NIE Wei-dong, et al. Research and development of visual scene simulation system in underwater vehicle distributed interactive simulation system[J]. Ship Electronic Engineering, 2004, 24(5): 18-21.