螺旋桨是目前船舶及海洋装备重要推进装置,其工作可靠性及服役性能对我国海洋战略的实施具有非常重要的意义。复杂海洋环境下螺旋桨服役性能除受到风、浪、流等环境因素影响外,还受到周围其他海洋异物的影响,进而引起螺旋桨载荷特性发生突变。本文基于计算流体力学基础理论,建立导管螺旋桨水动力学数值仿真模型。将海洋异物接近过程简化为准定常过程,分析不同接近距离对导管桨水动力性能的影响。基于流固耦合理论,将水动力学载荷施加在桨叶表面,获得不同接近距离时桨叶应力、应变的变化特性。研究结果表明:海洋异物的接近会对导管桨水动力学特性产生较大的影响作用。当异物接近距离为0.01 m时,导管桨推力将增加11.74%,扭矩增加12.73%,桨叶最大应力值增加32.06%,最大形变量增加30.28%。本文研究工作对导管桨服役性能评估及疲劳寿命预测具有非常重要的参考意义。
At present, the propeller is the most important propulsion system of ship and marine equipment. Its working reliability and service performance has the important influence on the implementation of our marine strategy. The service performance of propeller has been influenced by some undersea objects such as marine rubbish, large-scale marine fish and so on, in addition to the surrounding marine circumstances (wind, wave and current), which caused the change of propeller's load characteristics. In this article, the hydrodynamics simulation model of duct propeller was established, based on the basic theory of computational fluid mechanics (CFD). The unsteady process of the objects' moving near to the propeller was simplified as a quasi-steady process, then the variation of hydrodynamic performance of propeller was analyzed at different distances between the blade and undersea objects. Based on the fluid-structure interaction (FSI) theory, the hydrodynamic pressure distributions were applied into the propeller FEM model, the stress distribution and deformation characteristics during the approaching process were obtained. The results show that when the approach distance reduced to 0.01 m, the thrust of the duct propeller has increased 11.74%, the torque has increased 12.73%, the maximum stress has increased 32.06% and the maximum deformation has increased 30.28%. The research in this article has the important significance in service performance evaluation and fatigue life prediction of duct propeller.
2016,38(10): 34-40 收稿日期:2016-2-18
DOI:10.3404/j.issn.1672-7619.2016.10.007
分类号:U664.33
基金项目:国家973计划资助项目(2014CB046704);国家科技支撑计划课题资助项目(2014BAB13B01)
作者简介:叶晓明(1975-),男,博士,教授,从事专业动力机械及工程研究。
参考文献:
[1] 王国强, 董世汤. 船舶螺旋桨理论与应用(第2版)[M]. 哈尔滨:哈尔滨工业大学出版社, 2007.
[2] HU Z K, GUI H B, XIA P P, et al. Dynamic response analysis of the collision between ice and propeller at high speed[C]//Proceedings of the Society for Underwater Technology Technical Conference (SUTTC2013). Shanghai:Society of Underwater Technology, China Branch, China Ship Scientific Research Center, 2013:72-76.
[3] 孙文林, 王超, 康瑞, 等. 冰区航行船舶推进系统设计的若干考虑[J]. 船舶工程, 2015, 37(9):31-36. SUN Wen-lin, WANG Chao, KANG Rui, et al. Several considerations for design of ice-class propulsion system[J]. Ship Engineering, 2015, 37(9):31-36.
[4] 李巍, 王国强, 汪蕾. 螺旋桨粘流水动力特性数值模拟[J]. 上海交通大学学报, 2007, 41(7):1200-1203, 1208. LI Wei, WANG Guo-qiang, WANG Lei. The numerical simulation of hydrodynamics characteristic in propeller[J]. Journal of Shanghai Jiaotong University, 2007, 41(7):1200-1203, 1208.
[5] 王超, 黄胜, 解学参. 基于CFD方法的螺旋桨水动力性能预报[J]. 海军工程大学学报, 2008, 20(4):107-112. WANG Chao, HUANG Sheng, XIE Xue-shen. Hydrodynamic performance prediction of some propeller based on CFD[J]. Journal of Naval University of Engineering, 2008, 20(4):107-112.
[6] LAVINI G, PEDONE L, GENUZIO D H. Application of fully viscous CFD codes in the design of non cavitating propellers for passenger vessels[C]//First International Symposium on Marine Propulsors (SMP09). Trondheim, Norway:SMP, 2009.
[7] 李坚波, 王永生, 孙存楼. 大侧斜螺旋桨桨叶应力分析[J]. 中国造船, 2009, 50(4):1-6. LI Jian-bo, WANG Yong-sheng, SUN Cun-lou. Stress analysis of highly skewed propeller blades[J]. Shipbuilding of China, 2009, 50(4):1-6.
[8] 朱俊飞. 导管螺旋桨水动力分析与优化研究[D]. 武汉:武汉理工大学, 2013.
[9] 宋学官, 蔡林, 张华. ANSYS流固耦合分析与工程实例[M]. 北京:中国水利水电出版社, 2012.
[10] 孙存楼, 王永生, 卢晓平. CFD在船舶两种不同推进器中的应用研究[J]. 武汉理工大学学报, 2008, 32(3):435-438. SUN Cun-lou, WANG Yong-sheng, LU Xiao-ping. Research on the application of CFD to two different marine propulsors[J]. Journal of Wuhan University of Technology, 2008, 32(3):435-438.
[11] TAMURA Y, NANKE Y, MATSUURA M, et al. Development of a high performance ducted propeller[C]//International tug Conference (ITS) Convention and Exhibition 2010. Vancouver, Canada:ITS, 2010.
[12] 马艳. 导管螺旋桨的水动力性能分析与设计优化[D]. 哈尔滨:哈尔滨工程大学, 2010.