采用流固耦合(Fluid-Structure Interaction,FSI)的艇体波浪载荷和结构响应的数值分析方法,对顶浪、斜浪中复合材料双体艇结构的动态响应进行研究。分别建立了完整的复合材料艇体有限元模型以及流场模型,基于数值水池造波技术,通过计算获得了顶浪、斜浪中复合材料艇体结构的时域动态响应结果,选取高应力梯度区域,通过网格加密重构同时获得了复合材料的层间应力。选取具有代表性的前10大等效应力与内外面板最值主应力,在将FSI与传统基于经验公式的有限元法(Finite Element Method,FEM)的结果对比中发现,FSI中拱、中垂的计算结果更接近于FEM弯扭组合工况,而采用《钢制双体船直接计算指南》计算复合材料双体艇时,所用经验公式的顶浪航行波浪载荷计算值偏小。
Fluid-structure interaction method (FSI) has been used, researching on the dynamic response of the catamaran composite structures in head and oblique waves. The whole 3D composite model of catamaran and a numerical wave tank are constructed, based on numerical wave tank technology, dynamic response results of composite catamaran structures in head and oblique waves are carried on. Areas with high stress gradient is chosen and developed with refined mesh., interlaminar stresses distribution are then determined. Furthermore, top 10 von-mises and Max/Min. principal stress of the whole yacht are selected as comparative objects, comparing the results of the Fluid-Structure Interaction method (FSI) with finite element method (FEM) ones, it finds that the results from hogging, sagging conditions of FSI are much closer to a combination of bending and torsion conditions of FEM. It is also found that, using the direct calculation method for the steel catamaran to calculate the composite one in the paper under the head wave will lead to a relatively smaller calculation result.
2016,38(10): 41-45 收稿日期:2016-2-29
DOI:10.3404/j.issn.1672-7619.2016.10.008
分类号:U661.43
基金项目:交通运输部应用基础研究资助项目(2014329815100);福建省高校产学研重大资助项目(2014H6020);广东省创新训练资助项目(CXXL2014077)
作者简介:李尧(1989-),男,讲师,研究方向为船舶与海洋结构物强度计算及流固耦合。
参考文献:
[1] 钱若军, 董石麟, 袁行飞. 流固耦合理论研究进展[J]. 空间结构, 2008, 14(1):3-15. QIAN Ruo-jun, DONG Shi-lin, YUAN Xing-fei. Advances in research on fluid-structure interaction theory[J]. Spatial Structures, 2008, 14(1):3-15.
[2] 赵艳, 朱仁庆, 刘珍. 三维数值波浪水池的构建和粘性影响的研究[J]. 舰船科学技术, 2014, 36(5):42-48. ZHAO Yan, ZHU Ren-qing, LIU Zhen. Simulation of 3D numerical wave tank and viscosity research[J]. Ship Science and Technology, 2014, 36(5):42-48.
[3] 方昭昭, 赵丙乾, 朱仁传. 顶浪中船舶运动的数值模拟与波浪增阻计算[J]. 中国造船, 2014, 55(2):8-17. FANG Zhao-zhao, ZHAO Bing-qian, ZHU Ren-chuan. Numerical simulation of ship motion and calculation of added resistance in heading waves[J]. Shipbuilding of China, 2014, 55(2):8-17.
[4] 牟宗宝, 林焰, 于雁云. 玻璃钢渔船帽形骨材顶角变化对应力集中的影响[J]. 船舶工程, 2012, 34(5):17-19. MU Zong-bao, LIN Yan, YU Yan-yun. Affect of angle change on stress concentration of cap-shape reinforcing rib in FRP fishing boat[J]. Ship Engineering, 2012, 34(5):17-19.
[5] OJEDA R, PRUSTY B G, SALAS M. Finite element investigation on the static response of a composite catamaran under slamming loads[J]. Ocean Engineering, 2004, 31(7):901-929.
[6] 中国船级社. 海上高速船入级与建造规范[S]. 北京:人民交通出版社, 2012.
[7] 李宏伟. 数值水池造波方法研究[D]. 哈尔滨:哈尔滨工程大学, 2009.
[8] 方昭昭, 朱仁传, 缪国平. 数值波浪水池中航行船舶辐射问题的数值模拟[J]. 水动力学研究与进展, 2011, 26(1):65-72. FANG Zhao-zhao, ZHU Ren-chuan, MIAO Guo-ping. Numerical simulation on radiation problems of moving vessels in numerical wave tank[J]. Chinese Journal of Hydrodynamics, 2011, 26(1):65-72.