针对传统无人艇控制系统集成度低、可靠性差、通信距离有限等问题和在运动控制中存在的艇身水动力系数不确定性,加上外界风浪流的干扰等非线性因素,设计开发了一种小型无人艇集成控制系统。首先详细阐述了该集成控制系统的硬件结构、软件工作模式、控制模型及运动控制算法,使用Matlab/simulink工具箱进行速度、航向及深度的运动控制仿真实验。然后以自研的无人艇样机为实验对象进行下水实验。最终计算机仿真和实物下水试验结果表明,所设计的运动控制器不仅能实现艇上各传感器的数据采集与通信功能,下达和反馈运动控制指令的功能,也可以在一定外界干扰下跟踪运动控制中的期望目标,实现控制要求。
Aiming at the shortcomings existing in the traditional Unmanned Surface Vehicle (USV) control system, such as low integrated, poor reliability, limited in communication distance, and wide variations in USV hydrodynamic coefficients and disturbance, a Integrated Control System is designed and purposed for the kind of small size USV. First, elaborate the structure of the hardware, operating modes of the control software, USV mathematical model and motion control algorithm of the integrated motion system, the USV motion control system and physical simulation are conducted in Matlab/simulink to test the stability and efficiency of the integrated control system. Finally, the results of simulation and a field trial in a lake show that the integrated control system can not only achieve collect sensors data and give control instructions by communicate the host control system, but also can track the desired target and is insensitive to the changes of the unmatchable model perturbation and wave interference, which achieve the control requirements.
2016,38(10): 67-71,77 收稿日期:2016-2-2
DOI:10.3404/j.issn.1672-7619.2016.10.013
分类号:U664.82
作者简介:阚亚雄(1990-),男,硕士研究生,主要从事无人艇控制系统研究。
参考文献:
[1] CAMPBELL S, NAEEM W, IRWIN G W. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres[J]. Annual Reviews in Control, 2012, 36(2):267-283.
[2] 李家良. 水面无人艇发展与应用[J]. 火力与指挥控制, 2012, 37(6):203-207. LI Jia-liang. Development and application of unmanned surface vehicle[J]. Fire Control & Command Control, 2012, 37(6):203-207.
[3] 周洪光, 马爱民, 夏朗. 无人水面航行器发展[J]. 装备研究, 2009, 30(6):17-20, 30. ZHOU Hong-guang, MA Ai-min, XIA Lang. A research on the development of the unmanned surface vehicles[J]. National Defense Science & Technology, 2009, 30(6):17-20, 30.
[4] PARK S, KIM J, LEE W, et al. A study on the fuzzy controller for an unmanned surface vessel designed for sea probes[C]//Proceedings of the International Conference on Control, Automation and Systems. Gyeonggi-Do, Korea:KINTEX, 2005:1-4.
[5] CACCIA M, BONO R, BRUZZONE G, et al. Design and exploitation of an autonomous surface vessel for the study of sea-air interactions[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005:3582-3587.
[6] 吴限, 高双, 朱齐丹, 等. 船舶航向控制系统的反步滑模设计[J]. 控制工程, 2009, 5(S):51-55, 79. WU Xian, GAO Shuang, ZHU Qi-dan, et al. Design of ship course control system based on backstepping sliding mode[J]. Control Engineering of China, 2009, 5(S):51-55, 79.
[7] 廖煜雷, 庄佳园, 庞永杰, 等. 单喷泵无人滑行艇航向的反步自适应滑模控制[J]. 智能系统学报, 2012, 7(3):246-250. LIAO Yu-lei, ZHUANG Jia-yuan, PANG Yong-jie, et al. Backstepping adaptive sliding mode control for an unmanned planning craft course system with single waterjet[J]. CAAI Transactions on Intelligent Systems, 2012, 7(3):246-250.
[8] 林剑峰, 马善伟. 水面高速无人艇自主控制系统研究分析[J]. 船舶与海洋工程, 2014(4):57-60. LIN Jian-feng, MA Shan-wei. Self-control system of Unmanned Surface high speed boats[J]. Naval Architecture and ocean Engineering, 2014(4):57-60.
[9] 赵蕊, 余琨, 郑文成, 等. 无人水下航行器分布式运动控制系统设计与仿真验证[J]. 中国舰船研究, 2014, 9(6):92-99. ZHAO Rui, YU Kun, ZHENG Wen-cheng, et al. Design and simulation of the distributed motion control system for unmanned underwater vehicles[J]. Chinese Journal of Ship Research, 2014, 9(6):92-99.
[10] 黄俊峰, 徐竟青, 李一平. 水下机器人实验平台软件系统[J]. 计算机工程, 2003, 29(22):175-177. HUANG Jun-feng, XU Jing-qing, LI Yi-ping. Software system of experiment platform for underwater robot[J]. Computer Engineering, 2003, 29(22):175-177.