型腔尺寸的大小和腔数对水润滑橡胶尾轴承的力学性能有重要影响,并且直接影响轴承的承载能力和运转精度。本文基于有限元法,研究了不同型腔数目、型腔全角和型腔长度对尾轴承的力学性能影响。结果表明:在5种不同腔数尾轴承的研究对比中发现,4腔尾轴承的力学性能最优。研究型腔全角和长度因素影响时,发现全角55°长度500 mm的型腔结构性能更好。
Cavity size and the cavity number have an important influence on the mechanical property of water lubricated rubber stern tube bearing, and affect the bearing capacity and running accuracy directly. The effect of different number of cavity, cavity full angle and cavity length on mechanical properties of stern bearing was studied based on the finite element method in this paper. The results show that the mechanical properties of 4 cavity stern bearing is the best compared with the other five different cavity stern bearings. It was found that cavity structure performance of the angle of 55 and the length of 500 mm is better than others.
2016,38(10): 72-77 收稿日期:2016-3-2
DOI:10.3404/j.issn.1672-7619.2016.10.014
分类号:TH133.3
基金项目:国家自然科学基金资助项目(51575289)
作者简介:王建(1989-),男,硕士研究生,研究方向为摩擦学与表面工程。
参考文献:
[1] 李金明. 螺旋槽水润滑橡胶合金轴承动压润滑特性与动态接触有限元仿真分析[D]. 重庆:重庆大学, 2012.
[2] 张霞, 王新荣, 张更林, 等. 水润滑轴承的研究现状与发展趋势[C]//第三届十省区市机械工程学会科技论坛暨黑龙江省机械工程学会2007年年会论文(摘要)集. 哈尔滨:中国机械工程学会, 2007.
[3] 王春好. 新型动静压轴承设计和性能分析[D]. 北京:北京工业大学, 2007.
[4] 李金明. 螺旋槽水润滑橡胶合金轴承动压润滑特性与动态接触有限元仿真分析[D]. 重庆:重庆大学, 2012.
[5] 陈淑江, 路长厚, 马金奎. 出油孔对螺旋油楔动静压滑动轴承性能的影响[J]. 润滑与密封, 2007, 32(9):12-15, 59. CHEN Shu-jiang, LU Chang-hou, MA Jin-kui. Influence of the outlet hole on performance of a spiral oil wedge hybrid journal bearing[J]. Lubrication Engineering, 2007, 32(9):12-15, 59.
[6] 姚世卫, 胡宗成, 马斌, 等. 橡胶轴承研究进展及在舰艇上的应用分析[J]. 舰船科学技术, 2005, 27(S):27-30. YAO Shi-wei, HU Zong-cheng, MA Bin, et al. The new development of rubber bearing and its application in warships[J]. Ship Science and Technology, 2005, 27(S):27-30.
[7] 杨俊, 王隽, 周旭辉, 等. 水润滑橡胶轴承结构设计[J]. 舰船科学技术, 2011, 33(8):103-107. YANG Jun, WANG Jun, ZHOU Xu-hui, et al. Structure research of water-lubricated rubber bearings[J]. Ship Science and Technology, 2011, 33(8):103-107.
[8] 律辉, 王优强, 卢宪玖, 等. 基于Ansys的不同螺旋槽艉轴承的结构静力分析[J]. 润滑与密封, 2014, 39(3):57-62, 66. LV Hui, WANG You-qiang, LU Xian-jiu, et al. The static structural analysis of the various spiral groove stern bearing based on Ansys[J]. Lubrication and Sealing, 2014, 39(3):57-62, 66.
[9] 王优强, 杨成仁. 八纵向沟水润滑橡胶轴承润滑性能研究[J]. 润滑与密封, 2001(4):23-25. WANG You-qiang, YANG Cheng-ren. The experimental study on the lubrication mechanism of the water-lubricated rubber bearings with eight-cannelures[J]. Lubrication Engineering, 2001(4):23-25.
[10] 张杰, 郭宏升, 牛犇, 等. 水润滑高速动静压滑动轴承数值模拟[J]. 农业机械学报, 2008, 39(6):159-162. ZHANG Jie, GUO Hong-Sheng, NIU Ben, et al. Numerical simulation study on water-lubricated hydrostatic journal bearings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(6):159-162.
[11] 王芳芳, 陈渭, 张友峰. 新型水润滑动静压高速主轴轴承的流场模拟[J]. 润滑与密封, 2010, 35(12):28-31. WANG Fang-fang, CHEN Wei, ZHANG You-feng. Simulation on the flow fields of a novel water-lubricated static and dynamic hybrid bearing for high-speed spindle[J]. Lubrication Engineering, 2010, 35(12):28-31.
[12] 沈永凤, 方成跃, 曹宏涛. 船舶艉轴承的工作特性分析[J]. 中国舰船研究, 2011, 6(1):78-81, 85. SHEN Yong-feng, FANG Cheng-yue, CAO Hong-tao. Performance characteristics analysis on the shaft bearing of propeller[J]. Chinese Journal of Ship Research, 2011, 6(1):78-81, 85.