对斯特林发动机燃烧室氧-柴油无焰燃烧进行数值模拟。研究表明:氧-柴油无焰燃烧相比于传统氧-燃料燃烧需要卷吸更多的烟气来对纯氧进行稀释。直流燃烧室和旋流燃烧室内实现无焰燃烧的引射比分别为32和11.5,旋流燃烧室有助于无焰燃烧的实现。氧-柴油无焰燃烧的火焰峰值温度比传统燃烧模式低600 K左右,火焰峰值温度大幅下降。氧-燃料模式下燃烧室温度变化在20%以上,而氧-柴油无焰燃烧模式下温度变化小于15%,燃烧室温度均匀性显著提高。
The Stirling engine combustor with Flameless Oxy-diesel combustion was numerically simulated. The results show that Flameless oxy-diesel combustion compared to conventional Oxy-fuel combustion needs more flue gas to dilute the pure oxygen. Swirl combustor helps achieve flameless combustion,the ejection ratio of direct flow combustor and swirl combustor is 32 and 11.5, respectively. The peak temperature of Flameless oxy-fuel is decreased significantly, approximately 600 K lower than the the peak temperature of traditional combustion mode. The temperature uniformity of Stirling engine combustor was significantly increased by achieving Flameless combustion, the normalized spatial temperature variation is more than 20% for Oxy-fuel combustion and less than 15% for Flameless oxy-diesel combustion.
2016,38(10): 84-88,98 收稿日期:2016-7-12
DOI:10.3404/j.issn.1672-7619.2016.10.016
分类号:U664.1
基金项目:上海市青年科技启明星计划(B类)资助项目(16QB1402600)
作者简介:叶拥拥(1968-),男,高级工程师,从事船舶特种动力装置性能研究。
参考文献:
[1] WüNNING J A, WüNNING J G. Flameless oxidation to reduce thermal no-formation[J]. Progress in Energy and Combustion Science, 1997, 23(1):81-94.
[2] CAVALIERE A, DE JOANNON M. Mild combustion[J]. Progress in Energy and Combustion Science, 2004, 30(4):329-366.
[3] TSUJI H, GUPTA A K, HASEGAWA T, et al. High temperature air combustion[M]. Boca Raton, Fla, USA:CRC Press, 2003.
[4] LI P F, MI J C, DALLY B B, et al. Progress and recent trend in MILD combustion[J]. Science China Technological Sciences, 2011, 54(2):255-269.
[5] KUMAR S, PAUL P J, MUKUNDA H S. Studies on a new high-intensity low-emission burner[J]. Proceedings of the Combustion Institute, 2002, 29(1):1131-1137.
[6] MI J C, LI P F, ZHENG C G. Impact of injection conditions on flame characteristics from a parallel multi-jet burner[J]. Energy, 2011, 36(11):6583-6595.
[7] TU Y J, LIU H, CHEN S, et al. Effects of furnace chamber shape on the MILD combustion of natural gas[J]. Applied Thermal Engineering, 2015, 76:64-75.
[8] 吕煊. 适用于微小型燃气轮机富氢燃料的无焰燃烧技术[D]. 北京:中国科学院研究生院, 2010. LV Xuan. Investigation of flameless combustion technology for hydrogen-rich fuels in micro gas turbine[D]. Beijing:University of Chinese Academy Sciences, 2010.
[9] KRUSE S, KERSCHGENS B, BERGER L, et al. Experimental and numerical study of MILD combustion for gas turbine applications[J]. Applied Energy, 2015, 148:456-465.
[10] 谢超. HiTAC在主燃烧室中应用的基础研究[D]. 沈阳:沈阳航空工业学院, 2009. XIE Chao. The foudamental research of HiTAC apply in main combustion chamber[D]. Shenyang:Shenyang Institute of Aeronautical Engineering, 2009.
[11] TU Y J, LIU H, SU K, et al. Numerical study of H2O addition effects on pulverized coal oxy-MILD combustion[J]. Fuel Processing Technology, 2015, 138:252-262.
[12] BAUKAL C E JR. Oxygen-enhanced combustion[M]. Boca Raton, FL:CRC Press, 1998.
[13] 黄志光, 叶拥拥, 石玉美, 等. 安静型潜艇的AIP动力系统及其废气管理[J]. 舰船科学技术, 2004, 26(5):22-26. HUAN Zhi-guang, YE Yong-yong, SHI Yu-mei, et al. Non air-breathing power and its exhaust system of submarines[J]. Ship Science and Technology, 2004, 26(5):22-26.
[14] LU T, LIU Z, JING Y X. Numerical and experimental investigation of a MILD combustion burner for stirling engines[C]//Proceedings of the 16th International on Stirling Engine Conference. 2014.
[15] REDDY V M, KUMAR S. Development of high intensity low emission combustor for achieving flameless combustion of liquid fuels[J]. Propulsion and Power Research, 2013, 2(2):139-147.
[16] REDDY V M, SAWANT D, TRIVEDI D, et al. Studies on a liquid fuel based two stage flameless combustor[J]. Proceedings of the Combustion Institute, 2013, 34(2):3319-3326.
[17] REDDY V M, KATOCH A, ROBERTS W L, et al. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels[J]. Proceedings of the Combustion Institute, 2014, 35(3):3581-3589.
[18] LI P F, DALLY B B, MI J C, et al. MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace[J]. Combustion and Flame, 2013, 160(5):933-946.
[19] Tu Y J, Liu H, Chen S, et al. Numerical study of combustion characteristics for pulverized coal under oxy-MILD operation[J]. Fuel Processing Technology, 2015, 135:80-90.