利用混沌系统进行微弱信号检测时,确定系统由混沌态转化为大尺度周期态的混沌临界阈值至关重要。仿真表明:选取不同精度的混沌临界阈值将对混沌系统检测性能产生影响,选取的临界阈值精度越高,能够检测到信号的信噪比越低,但同时其对噪声检测的虚警率也越高。因此,实际检测中需根据检测要求来选取合适精度的临界阈值,以使检测性能达到检测要求。
Determining the critical value of chaotic system which brings the system from chaotic state to large-scale periodic state is very important in detecting weak signal by chaotic system. Simulation shows that choosing critical value of chaotic system with different precision will influence the detection performance of chaotic system. The higher precision of critical value of chaotic system, the signal with lower SNR (SNR, signal to noise ratio) can be detected by chaotic system, while the higher false alarm rate is derived. Therefore in actual signal detection, suitable precision of critical value of chaotic system should be chosen based on detection requirement in order to bring detection performance achieve the detection requirement.
2016,38(10): 137-141 收稿日期:2016-3-2
DOI:10.3404/j.issn.1672-7619.2016.10.028
分类号:TP391
作者简介:石敏(1979-),女,博士,工程师,主要从事水声信号处理方面的研究。
参考文献:
[1] 聂春燕. 混沌系统与弱信号检测[M]. 北京:清华大学出版社, 2009.
[2] ZHANG M, LIU Z Z, CAO Y, et al. Research and simulation on weak signal detection based on duffing oscillator and damping ratio perturbation[J]. Journal of Measurement Science and Instrumentation, 2011, 2(2):161-163.
[3] 张刚, 胡韬, 王颖. 基于Melnikov函数Duffing系统微弱信号检测[J]. 电子测量技术, 2015, 38(1):109-112. ZHANG Gang, HU Tao, WANG Ying. The weak signal detection based on Duffing system and Melnikov function[J]. Electronic Measurement Technology, 2015, 38(1):109-112.
[4] 陈军. 基于混沌理论的检测系统应用研究综述[J]. 甘肃高师学报, 2013, 18(2):21-25. CHEN Jun. Application research and discussing of detective systems based on chaos theory[J]. Journal of Gansu Normal Colleges, 2013, 18(2):21-25.
[5] 陈新国, 王洁芸. 混沌振子在不同初值下检测弱信号的性能分析[J]. 仪器仪表学报, 2012, 33(12):2857-2862. CHEN Xin-guo, WANG Jie-yun. Performance analysis of weak signal detection based on chaotic oscillator under different initial condition[J]. Chinese Journal of Scientific Instrument, 2012, 33(12):2857-2862.
[6] 朱斌. 基于混沌理论的微弱信号检测[J]. 电子科技, 2010, 23(2):65-67. ZHU Bin. Weak signal detection based on the chaos theory[J]. Electronic Science & Technology, 2010, 23(2):65-67.
[7] 石敏, 徐袭. 基于混沌系统的水下目标辐射噪声线谱检测[J]. 舰船科学技术, 2013, 35(5):30-33. SHI Min, XU Xi. Detection of underwater target radiated noise line-spectra based on chaos system[J]. Ship Science and Technology, 2013, 35(5):30-33.
[8] 朱来普, 张陆勇, 谢文凤, 等. 基于Duffing混沌振子的微弱信号检测研究[J]. 无线电工程, 2012, 42(1):17-20. ZHU Lai-pu, ZHANG Lu-yong, XIE Wen-feng, et al. Research of weak signal detection based on Duffing chaotic oscillator[J]. Radio Engineering, 2012, 42(1):17-20.
[9] 李琳, 刘春刚, 石硕, 等. 基于混沌振子和Lyapunov指数的微弱信号检测方法[J]. 黑龙江大学自然科学学报, 2012, 29(4):556-560. LI Lin, LIU Chun-gang, SHI Shuo, et al. A method of weak signal detection based on chaotic oscillator and Lyapunov exponent[J]. Journal of Natural Science of Heilongjiang University, 2012, 29(4):556-560.
[10] 冉莉, 王民. 一种强噪声背景下微弱信号检测方法研究[J]. 信息技术, 2012(2):41-45. RAN Li, WANG Min. Research on weak signal detection method under the strong noise background[J]. Information Technology, 2012(2):41-45.
[11] JIN T, ZHANG H. Statistical approach to weak signal detection and estimation using Duffing chaotic oscillators[J]. Science China Information Sciences, 2011, 54(11):2324-2337.
[12] 张宾. Lyapunov特性指数的算法研究及其在弱信号混沌检测中的应用[D]. 长春:吉林大学, 2004.