充液管路液压系统广泛应用于舰船、车床、制冷等大型运输系统上,由于管子的振动效果是充液流动情况所致,对其研究需要借助于流固耦合理论。本文针对线性充液管路,在有限元理论的基础上建立振动的流固耦合模型,研究对称布局限制下的管路振动模态及Von Misses应力分布情况,重点分析充液管路长度对压力波动的影响。结果表明:卡箍设置处能够明显减弱振幅,越远离卡箍设置处振动效果越明显,共振情况随着振动频率的增加明显得到加强;应力最大点只要布局在管子内部。压力变化是液压作用的宏观表现,波动的曲线反应出充液过程是一个复杂的作用过程,尽量选择布置长度较短的充液管路。
The liquid pipeline hydraulic system is widely used in aircraft, lathe, refrigeration and other large transport systems. Due to the effect of the vibration of the pipe is caused by the liquid flow conditions, the study of the need of fluid-structure interaction theory. In view of the linear liquid pipeline, fluid-solid coupling vibration model is established on the basis of the finite element theory. The pipe vibration modal and Von Misses stress distribution under the limit of symmetrical layout are studied. Results show that the clamp can be dramatically reduced amplitude. The more far away from the clamp set in vibration, the more obvious effect. The resonance condition obviously strengthen with the increase of vibration frequency; the maximum stress point as long as the layout inside the pipe. Pressure change is the macro performance of hydraulic effect and volatility curve reflects the charging process is a complex process, try to choose decorate liquid pipe of the shorter length.
2016,38(11): 87-90 收稿日期:2016-03-07
DOI:10.3404/j.issn.1672-7619.2016.11.018
分类号:TH137.1
作者简介:孙欢(1981-),男,博士研究生,研究方向为节能管路设计。
参考文献:
[1] 李萍, 殷晨波, 叶仪, 等. 基于AMESim的21 t液压挖掘机液压管路系统压力损失计算[J]. 液压与气动, 2013(3): 79-82.LI Ping, YIN Chen-bo, YE Yi, et al. Simulation of pressure drop in excavator hydraulic pipe system by AMESim[J]. Chinese Hydraulics & Pneumatics, 2013(3): 79-82.
[2] 兰箭, 穆希辉, 马振书, 等. 管道对液压系统的影响[J]. 科学技术与工程, 2007, 7(21): 5513-5516.LAN Jian, MU Xi-hui, MA Zhen-shu, et al. Influence of pipeline to hydraulic pressure system[J]. Science Technology and Engineering, 2007, 7(21): 5513-5516.
[3] 舒礼伟. 典型舰船循环水系统管路振动特性[J]. 舰船科学技术, 2014, 36(11): 162-165, 189.SHU Li-wei. The vibration characteristics of typical hull circulation water system[J]. Ship Science and Technology, 2014, 36(11): 162-165, 189.
[4] KUEHLERT K, WEBB S, SCHOWALTER D, et al. Simulation of the fluid-structure-interaction of steam generator tubes and bluff bodies[J]. Nuclear Engineering and Design, 2008, 238(8): 2048-2054.
[5] 郭庆, 范启富. 基于ANSYS的输流管道液固耦合有限元仿真[J]. 微型电脑应用, 2010, 26(4): 9-11.GUO Qing, FAN Qi-fu. Simulation of fluid-structure interaction in fluid conveying pipes by ANSYS[J]. Microcomputer Applications, 2010, 26(4): 9-11.
[6] 梁建术, 王涛, 李欣业. 基于ANSYS Workbench 的输液管道系统振动控制仿真研究[J]. 机械设计与制造, 2012(3): 187-189.LIANG Jian-shu, WANG Tao, LI Xin-ye. Vibration control analysis of liquid-conveying pipe system based on ANSYS workbench[J]. Machinery Design & Manufacture, 2012(3): 187-189.
[7] 彭先勇, 李晨阳, 李维嘉, 等. 载流管道振动数值仿真与实验测试[J]. 舰船科学技术, 2011, 33(11): 17-21.PENG Xian-yong, LI Chen-yang, LI Wei-jia, et al. Research on numerical analysis and measurement of pipes' vibration[J]. Ship Science and Technology, 2011, 33(11): 17-21.
[8] 陈斌, 邢志伟, 王立文. 飞机除冰车除冰液管路系统压力控制方法的研究[J]. 机床与液压, 2009, 37(8): 129-131.CHEN Bin, XING Zhi-wei, WANG Li-wen. Research of pipeline pressure control method for aircraft deicing vehicle[J]. Machine Tool & Hydraulic, 2009, 37(8): 129-131.