气溶胶态生物粒子的检测下限和响应时间是生物气溶胶荧光检测设备的2项重要指标。介绍一种空气中生物气溶胶浓度的检测方法,利用纯净空气在缓冲瓶中稀释发生的模拟生物气溶胶粒子浓度,稀释后的气溶胶一路进入光学颗粒物粒径谱仪,测量结果作为标准计数,另一路进入气溶胶检测设备完成测定。结果表明,所设计生物气溶胶荧光检测设备对纯净空气和真实空气中浓度<1 000/L的生物气溶胶粒子均具有较高检测灵敏度,响应时间<1 min。这对于空气中生物气溶胶粒子或其他粒子的计数测量及仪器标定具有一定借鉴意义。
Detection limit and alarm response time of bio-aerosol particles are two important indicators for bio-aerosol real-time detection instrument based on intrinsic fluorescence measurement. A method for detecting the concentration of bio-aerosols in the atmosphere is presented. Firstly, pure synthetic air was used to dilute the simulated bio-aerosol particles, and then, the diluted simulated bio-aerosol particles were discharged by two pipelines, one was inhaled into the optical particle sizer spectrometer (model TSI-3330) for standard count of bio-aerosol particles, and the other was inhaled into the bio-aerosol real-time detection instrument for testing its indicators. Testing results show that our bio-aerosol real-time detection instrument is sensitive to the bio-aerosol particles, at 1 000/L level, both in pure synthetic air and in the real atmosphere. In particular, its alarm response time is less than one minute. This is valid for the calibration of bio-aerosol real-time detection instrument, and may also be adopted for counting measurement of bio-aerosol or other particles.
2016,38(11): 161-164 收稿日期:2016-05-20
DOI:10.3404/j.issn.1672-7619.2016.11.034
分类号:TN247;X851
作者简介:闫学昆(1981-),男,博士,工程师,研究方向为核生化监测与防护。
参考文献:
[1] DESPRÉS V R, HUFFMAN J A, BURROWS S M, et al. Primary biological aerosol particles in the atmosphere: a review[J]. Tellus Series B-Chemical and Physical Meteorology, 2012, 64: 15598.
[2] 韩军, 许林军. 国外生物战剂监测装备发展状况研究[J]. 海军医学杂志, 2013, 34(4): 285-287.
[3] THAVASELVAM D, VIJAYARAGHAVAN R. Biological warfare agents[J]. Journal of Pharmacy & BioAllied Scienses, 2010, 2(3): 179-188.
[4] 冯春霞, 黄立华, 周光超, 等. 单分散生物气溶胶光散射特性的计算与分析[J]. 中国激光, 2010, 37(10): 2592-2598.
[5] HAIRSTON P P, HO J, QUANT F R. Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence[J]. Journal of Aerosol Science, 1997, 28(3): 471-482.
[6] PÖHLKER C, HUFFMAN J A, PÖSCHL U. Autofluorescence of atmospheric bioaerosols-fluorescent biomolecules and potential interferences[J]. Atmospheric Measurement Techniques, 2012, 5(1): 37-71.
[7] HUANG H C, PAN Y L, HILL S C, et al. Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles[J]. Optics Express, 2008, 16(21): 16523-16528.
[8] 高继刚, 王霞. 光谱分析技术在生物气溶胶检测上的研究进展[J]. 硅谷, 2014(16): 74-75.
[9] 徐傲, 熊超, 张佩, 等. 基于本征荧光测量的双通道生物气溶胶检测技术研究[J]. 光学学报, 2013, 33(8): 0812005.
[10] 上海市计量测试技术研究院. 尘埃粒子计数器校准规范: JJF 1190-2008[S]. 北京: 中国质检出版社, 2008.
[11] 葛琳琳, 丁蕾, 闫静, 等. 核黄素与NADH在紫光波段的激光诱导荧光光谱研究[J]. 原子与分子物理学报, 2013, 30(1): 125-131.
[12] HILL S C, PAN Y L, WILLIAMSON C, et al. Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria[J]. Optics Express, 2013, 21(19): 22285-22313.