为保证水下超空泡航行体稳定地运动,分叉分析航行体的运动状态随空化数变化的规律,基于分叉理论,利用数值仿真、相轨图分析并验证航行体在不同空化数下的运动特性,最后通过二维分岔图确定航行体稳定运动条件和参数范围。研究结果表明:超空泡航行体的运动具有非线性动力学特性,随着空化数的变化,系统的相轨迹出现极限环、混沌吸引子等现象;合理地调整控制律可以扩大航行体稳定运动的空化数范围,实现航行体的稳定运动。
To guarantee the steady motion of underwater supercavitating vehicles, the bifurcation analysis of underwater vehicles with variable cavitation numbers is conducted. Through numerical simulation and phase track diagram, the difference of motion characteristics with different cavitation numbers is revealed based on bifurcation theory. The conditions and ranges of parameters for the stable motion of vehicles are finally determined by a two-dimensional bifurcation diagram. The results indicate that the motion of supercavitating vehicles is found to have nonlinear dynamic characteristics, resulting in the phenomena with cavitation numbers varying, such as Hopf bifurcations, period-doubling bifurcations and chaos. The stable range of underwater supercavitating vehicles can be expanded by adjusting the gain of control law reasonably. Then the steady motion will be realized.
2016,(): 20-25,34 收稿日期:2016-05-09
DOI:10.3404/j.issn.1672-7619.2016.12.004
分类号:O322
基金项目:国家自然科学基金青年基金资助项目(11402116);国家自然科学基金(11472136);自主科研专项计划(30910612203)
作者简介:吕一品(1993-),女,博士研究生,研究方向为水下超空泡技术。
参考文献:
[1] 熊天红, 易文俊, 吴军基, 等. 小攻角下水下高速航行体超空泡流特性研究[J]. 舰船科学技术, 2009, 31(5):27-30, 38. XIONG Tian-hong, YI Wen-jun, WU Jun-ji, et al. Investigation on characteristic of supercaviting flow around underwater highspeed vehicle at small angle of attack[J]. Ship Science and Technology, 2009, 31(5):27-30, 38.
[2] SAVCHENKO Y N. Supercavitation-problems and perspectives[C]//Proceedings of the fourth international symposium on cavitation. Pasadena, California:California Institute of Technology, 2001:1-8.
[3] 朱新坚, 邵惠鹤, 张钟俊. 一类非线性系统Hopf分叉的控制[J]. 上海交通大学学报, 1997, 31(6):52-55. ZHU Xin-jian, SHAO Hui-he, ZHANG Zhong-jun. Control of Hopf bifurcation in a certain nonlinear system[J]. Journal of Shanghai Jiaotong University, 1997, 31(6):52-55.
[4] 魏英杰, 王京华, 张嘉钟, 等. 水下超空泡航行体非线性动力学与控制[J]. 振动与冲击, 2009, 28(6):179-182. WEI Ying-jie, WANG Jing-hua, ZHANG Jia-zhong, et al. Nonlinear dynamics and control of underwater supercavitating vehicle[J]. Journal of Vibration and Shock, 2009, 28(6):179-182.
[5] LIN G J, BALACHANDRAN B, ABED E H. Bifurcation behavior of a supercavitating vehicle[C]//Proceedings of the 2006 ASME international mechanical engineering congress and exposition. Chicago, Illinois, USA:ASME, 2006.
[6] 白涛, 孙尧, 莫宏伟. 分叉分析在水下高速运动体稳定控制中的应用[J]. 哈尔滨工程大学学报, 2008, 29(10):1067-1075. BAI Tao, SUN Yao, MO Hong-wei. Application of bifurcation analysis to the stability control of underwater high-speed vehicles[J]. Journal of Harbin Engineering University, 2008, 29(10):1067-1075.
[7] DZIELSKI J, KURDILA A. A benchmark control problem for supercavitating vehicles and an initial investigation of solutions[J]. Journal of Vibration and Control, 2003, 9(7):791-804.
[8] 张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学[M]. 北京:国防工业出版社, 2014:3-25.
[9] 许多生, 陆启韶. 飞机滚转时惯性耦合运动的分岔分析[J]. 航空学报, 2001, 22(2):144-147. XU Duo-sheng, LU Qi-shao. Bifurcation analysis of inertia cross coupling in aircraft rolling[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(2):144-147.
[10] 包伯成. 混沌电路导论[M]. 北京:科学出版社, 2013:3-39.
[11] LIN G J, BALACHANDRAN B, ABED E H. Dynamics and control of supercavitating vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2):021003.
[12] 易文俊, 熊天红, 刘怡昕. 水下高速射弹超空泡形态特性的数值模拟研究[J]. 舰船科学技术, 2008, 30(4):117-121. YI Wen-jun, XIONG Tian-hong, LIU Yi-xin. Numerical simulated research on characteristic of supercavity form around underwater high-speed projectile[J]. Ship Science and Technology, 2008, 30(4):117-121.