针对舰船推进系统集成管理中的实船训练仿真建模与机械设备状态评估等高级应用对知识的需求,研究知识管理中所需要的知识内容与形式,探索数据挖掘方法在大数据知识获取中的应用模式。以某型推进装置为对象,研究使用数据挖掘技术获取所需集成管理知识的途径,包括聚类算法在推进系统稳态工况基准模式识别中的应用,以及关联算法在状态特征模式识别中的应用等。本文研究为实现基于知识的舰船推进系统集成管理提供了研究基础。
To meet with the knowledge requirements of integrated management advanced applications of marine propulsion system, such as on board training simulation and mechanical equipment condition estimate et al. The type and expression of integrated management knowledge are analyzed. Data mining arithmetic is put forward to explore the application mode of knowledge mining and identify the running mode regulation of propulsion system. This research emphasis on clustering arithmetic applied to identify the norm value of running mode, associated arithmetic applied to identify the characteristic of running mode. The research in this paper can be a study foundation for knowledge based integrated management of marine propulsion system.
2016,38(12): 98-103 收稿日期:2016-05-26
DOI:10.3404/j.issn.1672-7619.2016.12.020
分类号:C37
基金项目:中国博士后科学基金资助项目(201150M1547);湖北省自然科学基金资助项目(2013CFB440)
作者简介:袁利国(1975-),男,博士,工程师,研究方向为舰船动力装置总体设计。
参考文献:
[1] KIEHNE T. Co-simulation and dynamic assessment of thermal management strategies aboard naval surface ships[R]. Texas:Electric Ship Research and Development Consortium, University of Texas, 2014.
[2] PINHA D, AHLUWALIA R. Decision support system for production planning in the ship repair industry[J]. Industrial and Systems Engineering Review, 2014, 2(1):52-61.
[3] ELBASHIR M Z, COLLIER P A, SUTTON S G. The role of organizational absorptive capacity in strategic use of business intelligence to support integrated management control systems[J]. The Accounting Review, 2011, 86(1):155-184.
[4] SHEN Y, LI X W, GAO H J, et al. Data-based techniques focused on modern industry:an overview[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):657-667.
[5] Rotating machine condition monitoring-the state of the art[EB/OL].[2014-10-15]. http://www.users.aston.ac.uk:880/modiarot/.
[6] MITGMBH. DataEngine[EB/OL].[2014-10-15]. http://www.dataengine.de/english/sp/demos/english/dataengine.exe.
[7] VELMURUGAN T. Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data[J]. Applied Soft Computing, 2014, 19:134-146.
[8] CHATURVEDI A, GREEN P E, CARROLL J D. K-modes clustering[J]. Journal of Classification, 2001, 18(5):35-55.
[9] TZORTZIS G, LIKAS A. The MinMax k-means clustering algorithm[J]. Pattern Recognition, 2014, 47(7):2505-2516.
[10] CHAVES A A, LORENA L A N. Clustering search algorithm for the capacitated centered clustering problem[J]. Computers & Operations Research, 2010, 37(3):552-558.
[11] GHARIB T F, NASSAR H, TAHA M, et al. An efficient algorithm for incremental mining of temporal association rules[J]. Data & Knowledge Engineering, 2010, 69(8):800-815.
[12] WINARKO E, RODDICK J F. ARMADA-An algorithm for discovering richer relative temporal association rules from interval-based data[J]. Data & Knowledge Engineering, 2007, 63(1):76-90.
[13] ÁLVAREZ V, VÁZQUEZ J M. An evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretization[J]. Expert Systems With Applications, 2012, 39(1):585-593.