针对船舶中央冷却水系统日益复杂、处理这类信息时存在很大不确定性的问题,将动态贝叶斯网络运用于复杂管路系统的检测与控制中。通过全面分析某型船舶中央冷却水系统各个部件之间的相互关系以及评估参数,建立系统的动态贝叶斯网络模型,运用BK算法对系统的运行状态进行推理。使目标节点的各个特征因素以及不同时间片同一特征因素相互修正,克服系统检测时不确定性、数据不完整和主观性。通过仿真表明,动态贝叶斯网络在不确定环境和数据缺失的情况下可以考虑时间的因素进行有效的状态推理并实现有效的控制。
In order to solve the problem of the central cooling water system which becomes more and more complex and has great uncertainty, the application of dynamic Bayesian network to the detection and control of the complex pipeline system is used in this paper. Through the comprehensive analysis of the relationship between a certain type of marine central cooling water system components and evaluation parameters, the dynamic Bayesian network model is established and the BK algorithm is used for inference. Each characteristic factor of the target node and the same characteristic factor of different time slice are corrected to overcome the uncertainty, incomplete data and subjectivity. The simulation results show that the dynamic Bayesian network can take the time factor into consideration in the case of uncertain environment and incomplete data, and can effectively control state.
2016,38(12): 104-109 收稿日期:2016-04-20
DOI:10.3404/j.issn.1672-7619.2016.12.021
分类号:U664.84
基金项目:中国博士后科学研究基金资助项目(201150M1547)
作者简介:孟瑞(1991-),男,硕士研究生,研究方向为舰船动力装置自动化与仿真技术。
参考文献:
[1] 刘富斌, 田志定, 向征涛. 混流式中央冷却系统设计探讨[J]. 船海工程, 2002(2):49-52. LIU Fu-bin, TIAN Zhi-ding, XIANG Zheng-tao. Design study of mixed flow central cooling system[J]. Ship & Boat, 2002(2):49-52.
[2] 付尧, 曾凡明, 陈于涛, 等. 舰用柴油机冷却水系统贝叶斯状态推理方法[J]. 舰船科学技术, 2014, 36(8):42-45, 52. FU Yao, ZENG Fan-ming, CHEN Yu-tao, et al. Research on the Bayesian state reasoning methods for marine diesel cooling water system[J]. Ship Science and Technology, 2014, 36(8):42-45, 52.
[3] XIANG Yang, POOLE D, BEDDOES M P. Multiply sectioned Bayesian networks and junction forests for large knowledge-based systems[J]. Computational Intelligence, 1993, 9(2):171-220.
[4] 王三民, 王宝树. 贝叶斯网络在战术态势评估中的应用[J]. 系统工程与电子技术, 2004, 26(11):1620-1623, 1679. WANG San-min, WANG Bao-shu. Application of Bayesian networks in tactical situation assessment[J]. Systems Engineering and Electronics, 2004, 26(11):1620-1623, 1679.
[5] 奚海荣, 马文丽, 梁斌. 基于贝叶斯网络SP算法的改进研究[J]. 计算机技术与发展, 2009, 19(3):155-157, 192. XI Hai-rong, MA Wen-li, LIANG Bin. Improvement of SP algorithm based on Bayesian networks[J]. Computer Technology and Development, 2009, 19(3):155-157, 192.
[6] 赵晓辉, 姚佩阳, 张鹏. 动态贝叶斯网络在战场态势估计中的应用[J]. 光电与控制, 2010, 17(1):44-47. ZHAO Xiao-hui, YAO Pei-yang, ZHANG Peng. Application of dynamic Bayesian network in battlefield situation assessment[J]. Electronics Optics & Control, 2010, 17(1):44-47.
[7] 宫义山, 高媛媛. 基于信息融合的诊断贝叶斯网络研究[J]. 计算机技术与发展, 2009, 19(6):106-108. GONG Yi-shan, GAO Yuan-yuan. Diagnostic Bayesian networks research based on information fusion[J]. Computer Technology and Development, 2009, 19(6):106-108.
[8] MIHAJLOVIC V, PETKOVIC M. Dynamic Bayesian networks:a state of the art[R]. CTIT technical reports series, TR-CTIT-34, University of Twente Document Repository, 2001.
[9] COOPER G F. The Computational complexity of probabilitic inference using Bayesian belief networks[J]. Artificial Intelligence, 1990, 42(2/3):393-405.
[10] MURPHY K P. Dynamic Bayesian networks:representation, inference and learning[D]. Berkeley, Fall:University of California, 2002.
[11] 胡大伟. 动态贝叶斯网络的近似推理算法研究[D]. 合肥:合肥工业大学, 2009. HU Da-wei. The research on approximate reasoning algorithm for dynamic Bayesian networks[D]. Hefei:Hefei Polytechnic University, 2009.
[12] 俞奎. 贝叶斯网络建模及推理算法研究[D]. 合肥:合肥工业大学, 2007. YU Kui. The research of learning and inference algorithm for bayesian networks[D]. Hefei:Hefei Polytechnic University, 2007.
[13] 刘俊娜. 贝叶斯网络推理算法研究[D]. 合肥:合肥工业大学, 2007. LIU Jun-na. Research on the Bayesian networks inference[D]. Hefei:Hefei Polytechnic University, 2007.
[14] 董晨. 贝叶斯网络在电力系统故障中的应用研究[D]. 沈阳:沈阳工业大学, 2010. DONG Chen. Applications and research of the Bayesian network in power system fault diagnosis[D]. Shenyang:Shenyang University of Technology, 2010.