针对船舶电气设备体积大、功耗高、散热差、噪音高等问题,将气液交换器、液冷板、热管等应用到船舶电气设备高效冷却系统中。对该系统的工作流程进行分析,建立电气设备本体、高效冷却系统和监控与保护装置之间的关系,提出船舶电气设备高效冷却方案。在联调试验和船舶电气设备上对该高效冷却方案进行实际应用,结果表明:该系统可提高船舶电气设备的功率密度、稳定性、冷却效率及噪音水平。
Aiming at the problem of large volume, high power consumption, poor heat dissipation, high noise for ship electrical equipment, modular water-cooled plate, sensing and control unit were applied into the water cooling system of ship electrical equipment. After the analysis of this working flow, the relationship among the electrical equipment body, the circulating water system and the monitoring and protection device was established. The cooling method of ship electrical equipment was put forward. The system was applied in kinds of experiments and ships, the results indicate that:The system can improve power density, stability, cooling efficiency, noise level.
2016,38(12): 110-115 收稿日期:2016-04-05
DOI:10.3404/j.issn.1672-7619.2016.12.022
分类号:TN830.5
基金项目:国家自然科学基金资助项目(61501419)
作者简介:谢坤(1986-),男,研究生,工程师,主要从事船舶电气自动化方面的研究。
参考文献:
[1] 程劲嘉. 综合模块化航空电子的液冷设计[J]. 电讯技术, 2011, 51(6):151-155. CHENG Jin-jia. Liquid cooling technology in integrated modular avionics[J]. Telecommunication Engineering, 2011, 51(6):151-155.
[2] 李志顺. 数字电视发射机水冷系统设计[D]. 大连:大连理工大学, 2006:18-21. LI Zhi-shun. Design of digital TV transmitter water cooling system[D]. Dalian:Dalian University of Technology, 2006:18-21.
[3] 欧阳灿, 高学农, 尹辉斌, 等. 高效液冷技术在电子元件热控制中的应用[J]. 电子与封装, 2008, 8(10):37-41. OUYANG Can, GAO Xue-nong, YIN Hui-bin, et al. Advances in application of efficient liquid cooling technique for electronic component thermal control[J]. Electronics & Packaging, 2008, 8(10):37-41.
[4] 雷俊禧, 朱冬生, 王长宏, 等. 电子芯片液体冷却技术研究进展[J]. 科学技术与工程, 2008, 8(15):4258-4263, 4269. LEI Jun-xi, ZHU Dong-sheng, WANG Chang-hong, et al. Research progress on chip liquid cooling technology[J]. Science Technology and Engineering, 2008, 8(15):4258-4263, 4269.
[5] 胡青. 风电变频器水冷系统的一种流量设计方案[J]. 水电与新能源, 2012(4):68-71. HU Qing. A flow design plan of wind power converter water cooling system[J]. Hydropower and New Energy, 2012(4):68-71.
[6] 桂永胜, 谢坤, 胡刚义, 等. 船舶电气设备水冷系统研究与开发[J]. 机电工程, 2015, 32(12):1625-1630. GUI Yong-sheng, XIE Kun, HU Gang-yi, et al. Development of water cooling system for ship electrical equipment[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(12):1625-1630.
[7] 谢坤, 夏伟, 胡刚义, 等. 船舶电力综合控制系统研究与开发[J]. 机电工程, 2015, 32(1):112-117. XIE Kun, XIA Wei, HU Gang-yi, et al. Development of integrated ship power control system[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(1):112-117.
[8] QIAN Mei, WU Zheng-guo, HAN Jiang-gui. Real-time simulation and analyses of ship energy management system network[J]. Energy Procedia, 2012, 16:1972-1978.
[9] 范则阳, 程骏, 谢坤. 一种本安型有水信号传感器设计[J]. 传感器与微系统, 2013, 32(2):74-76. FAN Ze-yang, CHENG Jun, XIE Kun. Design of an intrinsic safety water signal sensor[J]. Transducer and Microsystem Technologies, 2013, 32(2):74-76.
[10] ZIVI E. Design of robust shipboard power automation systems[J]. Annual Reviews in Control, 2005, 29(2):261-272.
[11] 夏伟, 谢坤, 阳世荣. 船舶分布式智能电力监控系统的研究与开发[J]. 机电工程, 2013, 30(8):1020-1024. XIA Wei, XIE Kun, YANG Shi-rong. Development of ship distributed intelligent power monitoring system[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(8):1020-1024.
[12] LU Heng-rong. Design on IPNCS of electrical propulsion ship based on real-time Ethernet[J]. Energy Procedia, 2012, 16:1707-1713.
[13] 阳世荣, 王云鹤, 吴团结, 等. 船舶辅机电气设备节能技术研究[J]. 舰船科学技术, 2011, 33(4):62-64, 68. YANG Shi-rong, WANG Yun-he, WU Tuan-jie, et al. Research on energy saving technology of marine auxiliary machine electric equipment[J]. Ship Science and Technology, 2011, 33(4):62-64, 68.
[14] 赵淑琴, 张永生. 船用蒸汽发生器给水系统的容错控制[J]. 中国舰船研究, 2016, 11(2):117-120, 138. ZHAO Shu-qin, ZHANG Yong-sheng. Fault tolerant control of the water-feeding system of steam generators[J]. Chinese Journal of Ship Research, 2016, 11(2):117-120, 138.