水下滑翔机的附加质量对其运动状态影响较大,本文采用了Hess-Smith(面元法)方法编制了计算任意三维物体附加质量的程序,利用Gambit软件对水下滑翔机进行网格划分,计算出实验室所研制的水下滑翔机附加质量,同时利用CFD(Computational Fluid Dynamics)技术,结合动网格技术和UDF(User-Defined Function),对水下滑翔机进行了PMM(Planar Motion Mechanism)试验模拟,并与Hess-Smith方法得到的结果进行对比,分析两者之间的特点和各自优势。
Added mass of an underwater glider is quite important for the motions of glider. In this paper, the added mass of an arbitrary three-dimensional body is obtained through Hess-Smith method. Then an underwater glider which was designed by our laboratory is meshed by Gambit software in order to obtain its added mass. Besides, the Planar Motion Mechanism (PMM) tests of the glider are simulated by using CFD software, dynamic mesh technique and UDF. By comparing with the Hess-Smith results, the characters and advantages of Hess-Smith method and PMM are analyzed.
2016,38(12): 116-120,134 收稿日期:2016-05-23
DOI:10.3404/j.issn.1672-7619.2016.12.023
分类号:U661.33;P715.5
基金项目:国家自然科学基金资助项目(51279107,41527901);上海市科委项目基金资助项目(13dz1204600)
作者简介:杨磊(1993-),男,硕士研究生,研究方向为水下航行器水动力分析及仿真。
参考文献:
[1] ZHANG S W, YU J C. Spiraling motion of underwater gliders:modeling, analysis, and experimental results[J]. Ocean Engineering, 2013, 60:1-13.
[2] 孟凡豪. 50 kg级水下自航行器整体水动力学性能优化设计[D]. 杭州:中国计量学院, 2014:56-57. MENG Fan-hao. Shape optimization design of 50 kilograms autonomous underwater vehicle based on hydraulic characteristics[D]. Hangzhou:China Jiliang University, 2014:56-57.
[3] 林超友, 朱军. 潜艇近海底航行附加质量数值计算[J]. 船舶工程, 2003, 25(1):26-29. LIN Chao-you, ZHU Jun. Numerical computation of added mass of submarine maneuvering with small clearance to sea-bottom[J]. Ship Engineering, 2003, 25(1):26-29.
[4] 杨勇, 邹早建, 张晨曦. 深浅水中KVLCC船体横荡运动水动力数值计算[J]. 水动力学研究与进展, 2011, 26(1):85-93. YANG Yong, ZOU Zao-jian, ZHANG Chen-xi. Calculation of hydrodynamic forces on a KVLCC hull in sway motion in deep and shallow water[J]. Chinese Journal of Hydrodynamics, 2011, 26(1):85-93.
[5] 孙铭泽, 王永生, 张志宏, 等. 基于网格变形技术的全附体潜艇操纵性计算[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(2):420-424. SUN Ming-ze, WANG Yong-sheng, ZHANG Zhi-hong, et al. Numerical simulation of submarine maneuverability based on mesh deformation technology[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2013, 37(2):420-424.
[6] 黄劲, 余志毅, 刘朝勋, 等. 基于CFD的两栖车辆水动力导数的计算方法[J]. 车辆与动力技术, 2014(2):39-43. HUANG Jin, YU Zhi-yi, LIU Chao-xun, et al. Numerical method for hydrodynamic coefficients of an amphibious vehicle based on CFD[J]. Vehicle & Power Technology, 2014(2):39-43.
[7] 马骋, 连琏. 水下运载器操纵控制及模拟仿真技术[M]. 北京:国防工业出版社, 2009. MA Cheng, LIAN Lian. Maneuvering control and simulation technology of underwater vehicles[M]. Beijing:National Defense Industry Press, 2009.
[8] 张晓频. 多功能潜水器操纵性能与运动仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2008:25-26. ZHANG Xiao-pin. Research on maneuverability and motion simulation of multifunction vehicle[D]. Harbin:Harbin Engineering University, 2008:25-26.