回顾对目前常用的非平稳特征提取方法与智能诊断技术,并总结舰炮自动机故障诊断需解决的难题,介绍非平稳特征提取方法与智能诊断技术在舰炮自动机故障诊断中的应用现状,详细阐述舰炮自动机故障诊断研究中存在的问题及对发展趋势的展望。
The non-stationary feature extraction technique and intelligent diagnosis method are reviewed comprehensively in the paper. Additionally, the problems consisting in automata of naval gun fault diagnosis are summarized, and the application of non-stationary feature extraction and intelligent diagnosis method in automata fault diagnosis is introduced. Finally, the questions in the research of automata fault diagnosis are expatiated detailedly, and the future development of automata fault diagnosis is prospected.
2016,38(12): 170-177 收稿日期:2016-07-29
DOI:10.3404/j.issn.1672-7619.2016.12.036
分类号:TH113.1
作者简介:贾兰俊(1967-),男,研究员,主要从事舰炮技术研究。
参考文献:
[1] 赵润鹏. 基于运动形态与信息熵的自动机故障诊断研究[D]. 太原:中北大学, 2012.
[2] WANG W J, MCFADDEN P D. Early detection of gear failure by vibration analysis I. Calculation of the time-frequency distribution[J]. Mechanical Systems and Signal Processing, 1993, 7(3):193-203.
[3] KIM Y H, LIM B D. Instantaneous frequency of a transient mechanical signature and its estimation by a moving window; applicability and physical interpretation[J]. Mechanical Systems and Signal Processing, 1994, 8(4):381-394.
[4] MENG Qing-feng, QU Liangsheng. Rotating machinery fault diagnosis using wigner distribution[J]. Mechanical Systems and Signal Processing, 1991, 5(3):155-162.
[5] OEHLMANN H, BRIE D, BEGOTTO V, et al. Examination of gearbox cracks using time-frequency distributions[C]//Proceedings of International Conference on Acoustics, Speech, and Signal Processing. Detroit, MI:IEEE, 1995:925-928.
[6] LOUGHLIN P J, BERNARD G D. Cohen-posch (positive) time-frequency distributions and their application to machine vibration analysis[J]. Mechanical Systems and Signal Processing, 1997, 11(4):561-576.
[7] LOUGHLIN P J, PITTON J W, ATLAS L E. Construction of positive time-frequency distributions[J]. IEEE Transactions on Signal Processing, 1994, 42(10):2697-2705.
[8] 毕果. 基于循环平稳的滚动轴承及齿轮微弱故障特征提取应用研究[D]. 上海:上海交通大学, 2007.
[9] 程军圣, 于德介, 杨宇. Hilbert-Huang变换端点效应问题的探讨[J]. 振动与冲击, 2005, 24(6):40-42, 47.
[10] RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(6):2607-2615.
[11] 徐科, 徐金梧. 小波变换在信号滤波中的应用[J]. 北京科技大学学报, 1997, 19(4):382-385.
[12] WANG W J, MCFADDEN P D. Application of wavelets to gearbox vibration signals for fault detection[J]. Journal of Sound and Vibration, 1996, 192(5):927-939.
[13] 林京, 屈梁生. 基于连续小波变换的奇异性检测与故障诊断[J]. 振动工程学报, 2000, 13(4):523-530.
[14] SAMUEL P D, PINES D J. Constrained adaptive lifting and the CAL4 metric for helicopter transmission diagnostics[J]. Journal of Sound and Vibration, 2009, 319(1/2):698-718.
[15] YANG D M, STRONACH A F, MACCONNELL P. Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks[J]. Mechanical Systems and Signal Processing, 2002, 16(2/3):391-411.
[16] 李斌, 章卫国, 宁东方, 等. 基于神经网络技术的飞机舵面故障趋势预测研究[J]. 系统仿真学报, 2008, 20(21):5840-5842, 5847.
[17] 韩兆福, 葛银茂, 程江涛, 等. 机载火控系统故障诊断神经网络专家系统[J]. 仪器仪表用户, 2005, 12(6):30-31.
[18] 潘铭志, 潘宏侠, 赵润鹏, 等. 自动机机箱振动分析与诊断研究[J]. 火炮发射与控制学报, 2012(2):67-70.
[19] 都衡, 潘宏侠. 基于局域波信息熵的高速自动机故障诊断[J]. 中国测试, 2014, 40(1):115-118, 136.
[20] 潘龙, 潘宏侠, 马白雪. 应用HHT时频分析与SVM的自动机故障诊断[J]. 机械设计与制造, 2015(4):59-61, 65.
[21] 潘龙, 潘宏侠, 陈玉青. 应用EEMD与广义维数优化逼近的自动机故障诊断[J]. 组合机床与自动化加工技术, 2015(8):82-85.
[22] 都衡, 潘宏侠. 基于信息熵和GA-SVM的自动机故障诊断[J]. 机械设计与研究, 2013, 29(5):127-130.
[23] 曹满亮, 潘宏侠. 基于第二代小波及PNN的自动机智能故障诊断[J]. 机械设计与研究, 2015, 31(3):22-26.
[24] 潘宏侠, 马百雪, 许昕. 基于小波尺度谱重排与小波排列熵的自动机故障诊断[J]. 火炮发射与控制学报, 2015, 36(2):64-67.
[25] YILDIZ B, GOLAY M W, KENNETH P M, et al. Development of a hybrid intelligent system for on-line real-time monitoring of nuclear power plant operations[C]//The 2002 PSAM6(Probabilistic Safety Assessment and Management) Conference. San Juan, Puerto Rico, 2002, 52:49-58.
[26] YOUSSIF R S, PURDY C N. Combining genetic algorithms and neural networks to build a signal pattern classifier[J]. Neurocomputing, 2004, 61:39-56.