本文从最简单的光滑平板开始,建立其均匀流中振动和声辐射的理论模型,给出研究声振耦合系统的基本思路;然后以此为基础进一步开展结构稍复杂的单向加筋平板声振特性理论研究,建立研究均匀流中单向加筋平板声振特性的基本理论模型和计算方法,为更为复杂的舰艇结构声振特性研究奠定基础。数值研究中先通过有效分析和收敛性分析验证所建立理论模型的有效性及级数解所需项数,在此基础上再分析流速,材料属性以及结构尺寸对均匀流中单向加筋平板远场声辐射特性的影响规律。
The demonstration of theoretical modelling of far-field sound radiation from an infinite bare plate in uniform flowing fluid presents the outline for analyzing the vibroacoustic characteristics of a coupling system. Based on such a synopsis, the theoretical model and numerical method for periodically stiffened plate in uniform flowing fluid are presented and the vibroacoustic characteristics are analyzed, which lays the foundation for research on vibroacoustic characteristics of more complex structures such as naval architectures. The theoretical model and numerical method are validated by comparison with published results and reliable numerical methods. The number of items requisite for convergence of the numerical truncation is determined by the convergence analysis. Finally, the effects of the velocity of fluid flow, the material properties and the structural parameters on the characteristics of far-field sound radiation from periodically stiffened plate in uniform flowing fluid are investigated.
2016,(s1): 12-23 收稿日期:2016-08-19
DOI:10.3404/j.issn.1672-7619.2016.S1.003
分类号:O422.2
作者简介:姚熊亮(1963-),男,教授,主要研究方向为爆炸与冲击力学,结构振动与噪声控制学。
参考文献:
[1] LAULAGNET B. Sound radiation by a simply supported unbaffled plate[J]. The Journal of the Acoustical Society of America, 1998, 103(5):2451-2462.
[2] PARK J, MONGEAU L, SIEGMUND T. Influence of support properties on the sound radiated from the vibrations of rectangular plates[J]. Journal of Sound and Vibration, 2003, 264(4):775-794.
[3] BERRY A, GUYADER J L, NICOLAS J. A general formulation for the sound radiation from rectangular, baffled plates with arbitrary boundary conditions[J]. The Journal of the Acoustical Society of America, 1990, 88(6):2792-2802.
[4] MEAD D J. Free wave propagation in periodically supported, infinite beams[J]. Journal of Sound and Vibration, 1970, 11(2):181-197.
[5] MEAD D J. Vibration response and wave propagation in periodic structures[J]. Journal of Engineering for Industry, 1971, 93(3):783-792.
[6] MEAD D J, PUJARA K K. Space-harmonic analysis of periodically supported beams:Response to convected random loading[J]. Journal of Sound and Vibration, 1971, 14(4):525-541.
[7] MEAD D M. Wave propagation in continuous periodic structures:Research contributions from Southampton, 1964-1995[J]. Journal of Sound and Vibration, 1996, 190(3):495-524.
[8] MEAD D J, MALLIK A K. An approximate theory for the sound radiated from a periodic line-supported plate[J]. Journal of Sound and Vibration, 1978, 61(3):315-326.
[9] MATHUR G P, TRAN B N. BOLTON J S, et al. Sound transmission through stiffened double-panel structures lined with elastic porous materials[C]//Proceedings of the 14th DGLR/AIAA Aero-Acoustics Conference. Aachen, Germany:AIAA, 1992:102-105.
[10] LEE J H, KIM J. Analysis of sound transmission through periodically stiffened panels by space-harmonic expansion method[J]. Journal of Sound and Vibration, 2002, 251(2):349-366.
[11] RUMERMAN M L. Vibration and wave propagation in ribbed plates[J]. The Journal of the Acoustical Society of America, 1975, 57(2):370-373.
[12] MACE B R. Periodically stiffened fluid-loaded plates. Ⅰ:Response to convected harmonic pressure and free wave propagation[J]. Journal of Sound and Vibration, 1980, 73(4):473-486.
[13] MACE B R. Periodically stiffened fluid-loaded plates. Ⅱ:Response to line and point forces[J]. Journal of Sound and Vibration, 1980, 73(4):487-504.
[14] MACE B R. Sound radiation from a plate reinforced by two sets of parallel stiffeners[J]. Journal of Sound and Vibration, 1980, 71(3):435-441.
[15] MACE B R. The vibration of plates on two-dimensionally periodic point supports[J]. Journal of Sound and Vibration, 1996, 192(3):629-643.
[16] MACE B R. Sound radiation from fluid loaded orthogonally stiffened plates[J]. Journal of Sound and Vibration, 1981, 79(3):439-452.
[17] MACE B R. Periodically stiffened fluid-loaded plates. Ⅱ:Response to line and point forces[J]. Journal of Sound and Vibration, 1980, 73(4):487-504.
[18] MAXIT L. Wavenumber space and physical space responses of a periodically ribbed plate to a point drive:A discrete approach[J]. Applied Acoustics, 2009, 70(4):563-578.
[19] MAIDANIK G. Surface-Impedance nonuniformities as wave-vector convertors[J]. The Journal of the Acoustical Society of America, 1969, 46(5A):1062-1073.
[20] LYON R H. Sound radiation from a beam attached to a plate[J]. The Journal of the Acoustical Society of America, 1962, 34(9A):1265-1268.
[21] NAYAK P R. Line admittance of infinite isotropic fluid-loaded plates[J]. The Journal of the Acoustical Society of America, 1970, 47(1B):191-201.
[22] ROMANOV V N. Radiation of sound by an infinite plate with reinforcing beams[J]. Soviet Physics:Acoustics, 1971, 17(1):92-96.
[23] EVSEEV V N. Sound radiation from an infinite plate with periodic inhomogeneities[J]. Soviet Physics:Acoustics, 1973, 19(3):226-229.
[24] FRAMPTON K D. Radiation efficiency of convected fluid-loaded plates[J]. The Journal of the Acoustical Society of America, 2003, 113(5):2663-2673.