为减少水液压阀中的气蚀和冲蚀造成的磨损,本文设计一种新的阀芯结构,通过采用全气蚀模型对其周围流场进行仿真,得到流场特性的理论分析结果。基于仿生学的Bio-TRIZ理论将生物学模型映射到工程学模型,设计一种仿红柳的抗冲蚀模型提高阀芯对冲蚀磨损的抵抗能力,然后用ISIGHT软件优化阀芯结构参数,最后通过FLUENT的复合模型计算了阀内部的气体体积率和冲蚀率,可以看出阀口处的气蚀和冲蚀都被大大减弱。
In order to reduce the cavitation and erosion occurring in the water hydraulic valve, a new structure of valve core was presented in this article. The Full Cavitation Model was adopted to deploy the flow field analysis, the characteristics of the flow field were theoretically analyzed with simulation. Further, The Bio-TRIZ theory was used to mapping the biological model to the engineering model, in this way, a tamarisk-like anti-erosion shape was presented to improve the erosion resistance of the valve core. The ISIGHT software was used to optimize the structural parameters of the valve core. Finally, the gas volume rate and the erosion rate of the valve were calculated through the FLUENT Hybrid model, the results shows that the erosion and the cavitation reduced effectively.
2016,(s1): 100-104 收稿日期:2016-08-20
DOI:10.3404/j.issn.1672-7619.2016.S1.017
分类号:TH137.52+1
基金项目:黑龙江省自然科学基金资助项目(F2016003);高等学校博士学科点专项科研基金资助项目(20122304110014);中央高校基本业务费(HEUCFX15008)
作者简介:徐贺(1964-),男,教授,博士生导师,研究方向为水液压系统设计与制造及可再生能源与海水淡化技术。
参考文献:
[1] URATA E. Technological aspects of the new water hydraulic[C]//Proceedings of the sixth Scandinavian International Conference on Fluid Power. Tampere, Finland:[s.n.], 1999:21-34.
[2] VARANDILI E. Properties of tap water as a hydraulic pressure medium[C]//Proceedings of the sixth Scandinavian International Conference on Fluid Power. Tampere, Finland:[s.n.], 1999:113-127.
[3] 弓永军. 纯水液压控制阀关键技术研究[D]. 杭州:浙江大学, 2005:23-25.GONG Yong-jun. Investigation into the key problems of water hydraulic control valves[D]. Hangzhou:Zhejiang University, 2005:23-25.
[4] FORDER A, THEW M, HARRISON D. A numerical investigation of solid particle erosion experienced within oil field control valves[J]. Wear, 1998, 216(2):184-193.
[5] BURAVOVA S N, GORDOPOLOV Y A. Cavitation erosion as a kind of dynamic damage[J]. International Journal of Fracture, 2011, 170(1):83-93.
[6] GOHIL P P, SAINI R P. Coalesced effect of cavitation and silt erosion in hydro turbines-a review[J]. Renewable and Sustainable Energy Reviews, 2014, 33:280-289.
[7] SINGHAL A K, ATHAVALE M M, LI H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3):617-624.
[8] VINCENT J F V, BOGATYREVA O A, BOGATYREV N R, et al. Biomimetics:Its practice and theory[J]. Journal of the Royal Society Interface, 2006, 3(9):471-482.
[9] 吉祥, 顾新建, 代风, 等. 基于BioTRIZ的产品创新设计过程[J]. 浙江大学学报(工学版), 2014, 48(1):35-41.JI Xiang, GU Xin-jian, DAI Feng, et al. BioTRIZ-based product innovative design process[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(1):35-41.
[10] 简燕辉. 运用生物词汇结合仿生与TRIZ之绿色创新设计方法研究[D]. 台南:国立成功大学, 2013:49-78.JIAN Yan-hui. Eco-innovative design method by integrating bionics with TRIZ through biological language[D]. Tainan:National Cheng Kung University, 2013:49-78.
[11] 江佳廉. 红柳抗风沙冲蚀机理及其仿生应用[D]. 长春:吉林大学, 2012:21-50.JIANG Jia-lian. Anti-erosion mechanism of Tamarix Chinensis and its biomimetic application[D]. Changchun:Jilin University, 2012:21-50.
[12] 赖宇阳. ISIGHT参数优化理论与实例详解[M]. 北京:北京航空航天大学出版社, 2012:88-102.LAI Yu-yang. ISIGHT parameter optimization theory and example explanation ISIGHT[M]. Beijing:Beihang University Press, 2012:88-102.
[13] 齐鄂荣, 曾玉红. 工程流体力学[M]. 武汉:武汉大学出版社, 2005:85-85.QI E-rong, ZENG Yu-hong. Engineering fluid mechanics[M]. Wuhan:Wuhan University Press, 2005:85-85.
[14] YOSHIDA F, MIYAKAWA S. Dynamic characteristics of proportional control valve using tap water-experimental examination[C]//Proceedings of the twelfth Scandinavian International Conference On Fluid Power. Okinawa, Japan:[s.n.], 2011:18-20.