本文采用CFD模拟了射流泵中的流动情况,并对射流泵结构进行优化设计以抑制空化。采用不同湍流模型发现计算结果类似,雷诺应力模型相对来说与实验数据更为相符。随着流量比的增大,最低压力点位置由喷嘴出口平直段衔接处向喉部衔接处转移。随后本文对这两处位置进行优化,取消喷嘴出口平直段,采用渐缩喷嘴,模拟结果显示该方案能有效消除喷嘴处的静压低压区;对喉部衔接处进行光顺化处理能有效提高该处的最低静压值。本文的计算结果能为射流泵优化设计提供参考。
The 3-D flow inside the jet pump was simulated in this paper. The static pressure distribution, which is related to the cavitation phenomenon occurring inside the jet pump, was analyzed. It was found that different turbulence models lead to similar simulation results, and the Reynolds stress model offers the best efficiency prediction comparing with the experimental data. The simulation results show that the location of minimum static pressure moves from the nozzle exit region to the connection between the suction chamber and throat when increasing the flow rate ratio. Then two optimizations have been proposed:1. adopting the convergent conical nozzle design and removing the straight zone at the nozzle exit. 2. Using the smooth curve instead of the sharp connection between the suction chamber and throat. Those two optimizations could both significantly improve the minimum static pressure, which further suppression the cavitation phenomenon. The simulation results could provide theoretical support for the jet pump designs.
2017,39(1): 85-89 收稿日期:2016-04-13
DOI:10.3404/j.issn.1672-7619.2017.01.017
分类号:TH38
基金项目:国家自然科学基金资助项目(51406138)
作者简介:肖颀(1988-),男,博士,工程师,主要从事汽液两相流数值模拟研究。
参考文献:
[1] 蔡标华. 射流泵初生空化及其试验研究[D]. 武汉:武汉大学, 2005. CAI Biao-hua. Analysis and experimental study on incipient cavitation within jet pumps[D]. Wuhan:Wuhan university, 2005
[2] 乌骏, 袁丹青, 王冠军, 等. 射流泵的发展现状与展望[J]. 排灌机械, 2007, 25(2):65-68. WU Jun, YUAN Dan-qing, WANG Guan-jun, et al. Current situation and prospect of jet pumps[J]. Drainage and Irrigation Machinery, 25(2):65-68.
[3] WINOTO S H, LI H, SHAH D A. Efficiency of jet pumps[J]. Journal of Hydroulic Engineering, 1997, 126(2):150-156.
[4] 龙新平, 何培杰. 射流泵气蚀问题研究综述[J]. 水泵技术, 2003(4):33-38. LONG Xin-ping, HE Pei-jie. A review on the investigation of cavitation phenomenon within jet pumps[J]. Pump Technology, 2003(4):33-38.
[5] PIANTHONG K, W. S., BEHNIA M, SRIVEERAKUL T, APHORNRATANA S. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique[J]. Energy Conversion & Management, 2007, 48:2556-2564.
[6] FAN J, J. E., THOMPSON H M, TOROPOVE V V, KAPUR N, COPLEY D, MINCHER A. Computational fluid dynamic analysis and design optimization of jet pumps[J]. Computers & Fluids, 2011, 46:212-217.
[7] BARTOSIEWICZ Y, Z. A., DESEVAUX P, YVES MERCADIER. Numerical and experimental investigations on supersonic ejectors[J]. International Journal of Heat and Fluid Flow, 2005, 26:56-70.
[8] 梁爱国, 刘景植, 龙新平, 等. 射流泵内流动的数值模拟及喉管优化[J]. 水泵技术, 2003(1):3-6. LIANG Ai-guo, LIU Jing-zhi, LONG Xin-ping, et al. Numerical simulation of the flow inside the jet pump and optimization of the throat[J]. Pump Technology, 2003(1):3-6.
[9] 龙新平, 程茜, 韩宁, 等. 射流泵空化流动的数值模拟[J]. 排灌机械工程学报, 2010, 28(1):7-11. LONG Xin-ping, CHENG Qian, HAN Ning, et al. Numerical simulation on cavitating flow within jet pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(1):7-11.
[10] 肖龙洲, 龙新平. 吸入室角度对环形射流泵空化性能的影响[J]. 浙江大学学报(工学版), 2015, 49(1):123-129. XIAO Long-zhou, LONG Xin-ping. Influence of inclined angle on cavitation performance of annular jet pump[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(1):123-129.
[11] 顾磊, 张景松, 杨春敏. 气蚀工况液体射流泵的实验研究[J]. 流体机械, 2006, 34:7-9. GU Lei, ZHANG Jing-song, YANG Chun-min. Experiment on the liquid jet pump in cavitation[J]. Fluid Machinery, 2006, 34:7-9.