随着多学科设计优化(Multidisciplinary Design Optimization,MDO)技术的发展,它将成为优化设计的大趋势。为了能够更好地运用MDO来解决船舶设计优化问题,本文对近年来发展的MDO算法进行系统梳理和分类,对发展已较成熟的几种算法进行简要介绍,对新发展的几种特殊算法应用环境、性能特点进行重点介绍;最后,对MDO算法研究存在的不足和今后发展趋势提出了若干建议。
With the development of the Multidisciplinary Design Optimization (MDO) technology, it will become the general trend of the optimization in the future. For a better use of MDO to solve ship design problem, this paper provided a survey and classification of the main MDO algorithms that have been present in recent literatures. A brief introduction was carried out for some developed MDO algorithms, but a more details of the application environment as well as performance features were present here for several developing ones. Finally, a discussion on the drawback and develop trend of MDO algorithm were performed, and several suggestions were given.
2017,39(2): 1-5,47 收稿日期:2016-07-27
DOI:10.3404/j.issn.1672-7619.2017.02.001
分类号:U662
作者简介:杨磊(1980-),男,博士研究生,研究方向为船舶性能多学科设计优化。
参考文献:
[1] SOBIESZCZANSKI-SOBIESKI.J. A linear decomposition method for large optimization problems-blueprint for development[R]. NASA Technical Memorandum 83248, Feb. 1982.
[2] GIESING HOSEPH P, BARTHELEMY J M. A summary of industry MDO application and needs[C]//An AIAA White Paper, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998.
[3] OLDS, JOHN R. Multidisciplinary design techniques applied to conceptual aerospace vehicle desig[D]. North Carolina State University, 1993.
[4] GIUNTA A A, GOLIVIDOV O, KNILL D L, et al. Multidisciplinry design optimization of advanced aircraft configurations[R]. MAD Center Report 96-06-01.
[5] JOEL M G. Multidisciplinary design optimization of a strut-braced wing aircraft[M]. Virginia Polytechnic Institute and State University, April 13, 1998.
[6] 蔡伟. 不确定性多目标MDO理论及其在飞行器总体设计中的应用研究[D]. 长沙:国防科学技术大学, 2008.
[7] SRINIVAS K, SOBIESZCZANSKI-SOBIESKI J. Multidisciplinary design optimization-some formal methods, framework requirement, and application to vehicle design[C]//Int.J.VehicleDesign(Special Issue), 3-22.
[8] CRAMER E J, DENNIS Jr J E, FRANK P D, et al. Problem formulation for multidisciplinary optimization[J]. SIAM Journal on Optimization, 1994, 4(4):754-776.
[9] HAFTKA R T. Simultaneous analysis and design[J]. AIAA Journal, 1985, 7(7):1099-1103.
[10] BALLING R J, SOBIESZCZANSKI-SOBIESKI J. Optimization of coupled systems:a critical overview of approaches[J]. AIAA Journal, 1996, 34(1):6-17.
[11] SELLAR R S, BATILL S M, RENAUD J E. Response surface based, concurrent subspace optimization for multidisciplinary system design[C]//34th AIAA Aerospace Sciences and Meeting Exhibit, 1996.
[12] RENAUD, JOHN E. Sequential approximation in non-hierarchic system decomposition and optimization:a multidisciplinary design tool[D]. Rensselaer Polytechnic Institute, 1992.
[13] KROO J, ALTUS S, SOBIESZCZANSKI-SOBIESKI J, et al. Multidisciplinary optimization methods for aircraft preliminary design[J], AIAA-94-4325, 1994.
[14] ALEXANDROV N M, LEWIS R M. Analytical and computational aspects of collaborative optimization for multidisciplinary design[J]. AIAA Journal, 2002, 40(2):301-309.
[15] DEMIGUEL A V, MURRAY W. An analysis of collaborative optimization methods[C]//8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization, Long Beach, CA, 2000.
[16] BRIAN R, ILANKROO. Enhanced collaborative optimization:application to an analytic test problem and aircraft design[C]//In 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, number September, Victoria, British Columbia, Canada, September 2008.
[17] BRIAN D R. Aircraft family design using enhanced collaborative optimization[D]. Stanford University, 2008.
[18] JAROSLAW, SOBESZCZANSKI-SOBIESKI. Bi-level integrated system synthesis(BLISS)[J]. NASA/TM-1998-208715;
[19] KIM H M, MICHELENA N F, PAPALAMBROS P Y, et al, Target cascading in optimal system design[J]. Journal of Mechanical Design, 2003, 125(3):474-480.
[20] ANGEL-VICTOR D. Two decomposition algorithms for nonconvex optimization problems with global variables[D]. Stanford University, 2001.
[21] DEMIGUEL V, MURRAY W. A local convergence analysis of bileveldecomposition algorithms[J]. Optimization and Engineering, 2006, 7(2):99-133.
[22] MOON-KYUN S, GYUNG-JIN P. Multidisciplinary design optimization based on independent subspaces[J]. International Journal for Numerical Methods in Engineering, 2005(64):599-617.
[23] SI Yi, SHIN J K, PARK G J. Comparison of MDO methods with mathematical examples[J]. Structural and Multidisciplinary Optimization, 2008(39):391-402.
[24] IAN R. Chittick and Joaquim R. R. A. Martins. An asymmetric suboptimization approach to aerostructural optimization[J]. Optimization and Engineering, 2009, 10(1):133-152.
[25] MARTINS J R R A, ALONSO J J, REUTHER J J. A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design[J]. Optimization and Engineering, 2005, 6(1):33-62.
[26] SRINIVAS KODIYALAM. Evaluation of methods for multidisciplinary design optimization(MDO), PhaseⅠ[C]//NASA/CR-1998-20876.
[27] SRINIVAS KODIYALAM, CHARLES YUAN. Evaluation of methods for multidisciplinary design optimization(MDO), Phase Ⅱ[C]//NASA/CR-2000-210313.
[28] 赵敏, 操安喜, 崔维成. 多学科设计优化方法的比较[J]. 中国造船, 2008, 49(3):68-78.
[29] 孔凡国, 李钰. 多学科设计优化方法与传统设计优化方法的比较研究[J]. 计算机工程与科学, 2008, 30(7):136-138.
[30] HULME K F, BOLEBAUM C L. A comparison of solution strategies for simulation-based multidisciplinary design optimization[C]//AIAA-98-4977;
[31] 龚春林, 谷良贤, 袁建平. 基于全局优化算法的多学科优化计算构架[J]. 西北工业大学学报, 2009, 27(1):52-56;
[32] 李世海. 多学科设计优化(MDO)算法研究[D]. 中国地质大学(北京)硕士学位论文, 2009.
[33] Nathan P. Tedford, Joaquim R.R.A. Martins. Benchmarking multidisciplinary design optimization algorithms[J]. Optim Eng, 2010(11):159-183.