为提高拖轮操纵模拟器的行为真实感,运用操纵性理论和分离型建模思想,建立全回转拖轮适用于四象限全工况操纵运动的数学模型。通过处理导管桨JD75系列和四象限螺旋桨Nordstrom系列试验图谱后,提出了导管桨四象限推力模型,同时提出了一种适用于全速域的拖轮船体水动力模型。搭建拖轮运动模拟平台,开展一系列操纵性仿真试验,包括速度试航试验、螺线试验、Z形试验、回转试验及停船试验。将仿真数据与Force Technology公司提供的试验数据进行比较分析,一致性良好,表明该模型精度可满足航海上仿真的需要。
In order to improve the behavioural realism of tug ship-handling simulator, a ship motion mathematical model of azimuth tug is established by using the theory of maneuverability and separate modeling framework and this model is suitable for full-mission maneuvering range in four quadrants. By processing the ducted propeller JD75 character curves and four-quadrant propeller Nordstrom test curves, a ducted propeller thrust curve across four quadrants is put forward, then a hull hydrodynamic model for tug applicable to all speed range is proposed. The established simulation platform carries out a series of typical maneuverability tests, including speed trial test, spiral test, zigzag test, turning test and stopping test. In comparison with simulation results and test data provided by Force Technology company, the model is reasonable and satisfactory, and its simulation precision can meet the need of navigation.
2017,39(2): 114-120 收稿日期:2016-06-17
DOI:10.3404/j.issn.1672-7619.2017.02.023
分类号:U661.3
基金项目:863计划课题资助项目(2015AA016404);国家自然科学基金资助项目(51109020);交通部应用基础研究资助项目(2014329225370);海洋公益性行业科研专项资助项目(201505017-4)
作者简介:杨景(1991-),男,硕士研究生,从事船舶运动与建模研究。
参考文献:
[1] 陈宁, 王之民, 李雯, 等. 全回转拖轮运动建模与视景仿真[J]. 舰船科学技术, 2015, 37(8):52-56, 61.CHEN Ning, WANG Zhi-min, LI Wen, et al. Research on the turning movement and visual simulation for the Z-propeller tug[J].Ship Science and Technology, 2015, 37(8):52-56, 61.
[2] 尹勇, 金一丞, 任鸿翔, 等. 全任务航海仿真系统的评价方法及关键技术研究[J]. 系统仿真学报, 2009, 21(21):6910-6914.YIN Yong, JIN Yi-cheng, REN Hong-xiang, et al. Research on evaluation method and key technologies of full mission navigation simulation system[J]. Journal of System Simulation, 2009, 21(21):6910-6914.
[3] 李秋珍, 刘畅. 船舶操纵性评估体系构架设计[J]. 舰船电子工程, 2012(12):101-103, 135.LI Qiu-zhen, LIU Chang.Design of evaluation arctitecture on the ship's maneuverability[J]. Ship Electronic Engineering. 2012(12):101-103, 135.
[4] 洪碧光, 赵发明, 孔庆文, 等. 船舶Z形操纵试验的数值模拟[J]. 大连海事大学学报, 2015, 41(2):1-6.HONG Bi-guang, ZHAO Fa-ming, KONG Qing-wen, et al.Numerical simulation of ship's zigzag test[J].Journal of Dalian Maritime University, 2015, 41(2):1-6.
[5] 陆冬青. 船舶倒车停船运动仿真研究[J]. 舰船科学技术, 2007, 29(4):110-113, 116.LU Dong-qing. Simulation on ship stopping motion by reverse propulsion[J]. Ship Science and Technology, 2007, 29(4):110-113, 116.
[6] 霍虎伟. 航海模拟器中全回转拖轮操纵运动建模与仿真[D]. 大连:大连海事大学, 2013.
[7] 李殿璞. 基于螺旋桨特性四象限Chebyshev拟合式的深潜艇正倒航变速推进模型[J]. 哈尔滨工程大学学报, 2002, 23(1):52-57.LI Dian-pu. Chebyshev fit of propeller properties across four quadrants and propulsion model of DSV[J].Journal of Harbin Engineering University, 2002, 23(1):52-57.
[8] LI Dian-pu, WANG Zhong-yi, CHI hai-hong. Chebyshev fitting way and error analysis for propeller atlas across four quadrants[J]. Journal of Marine Science and Application, 2002, 1(1):52-59.
[9] YE Bao-yu, WANG Qin-ruo, WAN Jia-fu, et al. A four-quadrant thrust estimation scheme based on chebyshev fit and experiment of ship model[J]. Open Mechanical Engineering Journal, 2012, 6(1):148-154.