无人水面艇自主航行中受到外部环境干扰及在控制中心-执行器网络通道中存在网络诱导特性(如网络诱导时延、数据丢包等)的影响,会降低系统性能,影响航向控制系统的稳定性。为了能使无人艇按照设定航向快速、稳定地航行,提出一种基于网络的无人艇航向控制策略。首先,建立基于网络的无人艇航向控制系统模型。基于这个模型,运用Lyapunov稳定性理论和凸分析方法导出能使网络环境下无人水面艇航向控制系统渐进稳定的控制律,并设计基于网络的航向控制器。通过仿真验证所提出方法和设计控制器的有效性。
An unmanned surface vehicle (USV) is subject to the influences of the external environment disturbance and network-induced characteristics (such as network-induced delay and packet loss in the control center-to-actuator network channel, which will degrade the performance and the stability of the heading control system. To make the unmanned surface vehicle sail fast and stably, a kind of USV network-based heading control strategy is proposed. Network-based models for the unmanned surface vehicle subject to the wave-induced disturbance are established. Based on these models, controller design criteria are derived to asymptotically stabilize the USV heading control system by defining a suitable Lyapunov functional and adopting the convex analysis method. The simulation results verify the effectiveness of the proposed control schemes and the designed controllers.
2017,39(2): 125-131 收稿日期:2016-07-01
DOI:10.3404/j.issn.1672-7619.2017.02.025
分类号:U675.95
基金项目:国家自然科学基金资助项目(61374063,61403170);江苏省“333工程”科研资助项目(BRA2015358);江苏省“六大人才高峰”资助项目(DZXX-025)
作者简介:陈丽丽(1990-),女,硕士研究生,主要研究领域为无人水面艇运动控制。
参考文献:
[1] MAHACEK P, KITTS C A, MAS I. Dynamic guarding of marine assets through cluster control of automated surface vessel fleets[J]. IEEE/ASME. Transactions on Mechatronics, 2012, 1(17):65-75.
[2] SOHN S I, OH J H, LEE Y S, et al. Design of a fuel-cell-powered catamaran-type unmanned surface vehicle[J]. IEEE Journal of Oceanic Engineering, 2015, 2(40):388-396.
[3] QI A C, HAN Q L, WANG Y L. A survey of motion control for marine vehicles[C]. Proceedings of the 34th Chinese Control Conference. Hangzhou, China, 2015:28-30.
[4] YANG T C. Networked control system:a brief survey[J]. IEE Proc. Control Theory Applications, 2006, 153(4):403-412.
[5] HWANG K S, TAN S W, HSIAO M S, et al. Cooperative multi-agent congestion control for high speed networks[J]. IEEE Transactions on Systems Man and Cybemetics, 2005, 35(2):255-268.
[6] KATAYAMA H, AOKI H. Straight-line trajectory tracking control for sampled-data underactuated ships[J]. IEEE Transactions on Control Systems Technology, 2014, 4(22):1638-1645.
[7] 由丹丹, 廖煜雷, 董早鹏. 喷水推进无人艇航向的鲁棒S面控制方法[J]. 中南大学学报(自然科学版), 2013(S1).
[8] 王雨迪, 王国峰. 基于自抗扰控制算法的水面无人艇航向自动舵设计[D]. 大连:大连海事大学, 2014.
[9] 廖煜雷, 庞杰光, 庄家园. 喷水推进型无人艇航向跟踪的反步自适应滑模控制[J]. 计算机应用研究, 2012, (1)29:83-100.
[10] 孙巧梅, 任光. 自适应逆控方法的无人艇航向控制[J]. 中国航海, 2012, 4(35):17-21.
[11] 杨承恩, 贾星乐, 毕英君. 船舶舵阻摇及其鲁棒控制[M]. 大连:大连海事大学出版社, 2001.
[12] PENG C, FEI M R. An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay[J]. Fuzzy Sets Syst, 2013, 212(1):97-109.
[13] JIANG C, ZOU D X, ZHANG Q L. Observer-based control for networked control systems with network induced delay and packet dropout[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China, 2010, 4376-4379.
[14] SEURET A, GOUAISBAUT F. Wirtinger-based integral inequality:application to time-delay systems[J]. Automatica, 2013, 49(9):2860-2866.
[15] WANG Y L, HAN Q L. Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments[J]. IEEE Transactions on Industrial Informatics, 2015(c) 1551-3203.
[16] 丰敏佳, 王玉龙. 连续时间网络控制系统的鲁棒故障检测[J]. 计算机工程, 2015, 8(41):101-109.
[17] 刘胜. 现代船舶控制工程[M]. 北京:科学出版社, 2010.
[18] JIA X, ZHANG D, Hao X, et al. Fuzzy H∞ tracking control for nonlinear networked control systems in T-S fuzzy model[J]. IEEE Transcations on systems, Man and Cybernetics, 2009, 39(4):1073-1079.