为探讨新型复合装甲在舰船发生火灾时高温对气凝胶毡保护的高强聚乙烯的影响规律,以及在A60标准条件下高强聚乙烯免受高温影响所需气凝胶毡的厚度,设计了不同厚度的气凝胶毡与高强聚乙烯夹芯防护结构,借助有限元软件Ansys14.0对其温度场进行了数值模拟,并与实验结果进行对比分析。结果表明:实验结果与数值仿真计算结果较吻合;气凝胶毡面火层温度梯度较大,向背火层方向依次减小,SiO2气凝胶毡具有很好的隔温效果;该防护结构达到A60热防护要所需SiO2气凝胶毡的厚度约为21.8 mm。
In order to explore the influence of new type composite armor in high temperature fire to protect high strength polyethylene from silicate Aero-gel. And the requirement of silicate Aero-gel for protecting high strength polyethylene from high temperature in A60 standard condition. Designed the sandwich armor structure using different thickness of silicate Aero-gel and high strength polyethylene, which used finite element software Ansys14.0 to analysis the temperature field. and compared the simulation results with experimental results. The results show that:the experimental results and simulation results are in good agreement; the reduce of temperature gradient from the surface toward fire to the surface backward fire indicate the good effect of silicate Aero-gel in temperature compartment; the armor structure to achieve the A60 standard needs a thickness of silicate Aero-gel as 21.8mm.
2017,39(3): 41-45,48 收稿日期:2016-05-06
DOI:10.3404/j.issn.1672-7619.2017.03.008
分类号:U668.1
基金项目:国家自然科学基金资助项目(51179200)
作者简介:郑盼(1990-),男,硕士研究生,研究方向为船用材料与应用工程
参考文献:
[1] 张典堂, 陈利, 孙颖, 等. UHMWPE/LLDPE复合材料层板低速冲击及冲击后压缩性能实验研究[J]. 复合材料学报, 2013, 30:107-111.ZHANG Dian-tang, CHEN Li, SUN Ying, et al. Low velocity impact and residual compressive strength impact properties of UHMWPE/LLDPE composite laminates[J]. Acta Material Composite Sinica, 2013, 30:107-111.
[2] 蔡军锋, 傅孝忠, 易建政. 超高分子量聚乙烯-聚氨酯泡沫复合材料的抗爆实验与数值模拟[J]. 高分子材料科学与工程, 2013, 29(11):79-83.CAI Jun-feng, FU Xiao-zhong, YI Jian-zheng. Anti-explosion experiment and numerical simulation of UHMWPE-PUF composite[J]. Polymer Materials Science and Engineering, 2013, 29(11):79-83.
[3] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性[J]. 爆炸与冲击, 2015, 10(3):63-69.HOU Hai-liang, ZHANG Cheng-liang, LI Mao, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments[J]. Explosion and Shock Waves, 2015, 10(3):63-69.
[4] 陈长海, 徐文献, 朱锡, 等. 超高分子量聚乙烯纤维增强层合厚板抗高速钝头弹侵彻的理论模型[J]. 中国舰船研究, 2015, 10(3):63-69.CHEN Chang-hai, XU Wen-xian, ZHU Xi, et al. Theoretical model for thick ultra-high molecular weight polyethylene fiberreinforced laminates penetrated by high-velocity blunt-nosed projectiles[J]. Chinese Journal of Ship Research, 2015, 10(3):63-69.
[5] 张成亮, 朱锡, 侯海量, 等. 近距空爆下复合抗爆舱壁变形破坏模式试验研究[J]. 振动与冲击, 2014, 33(11):33-48.ZHANG Cheng-liang, ZHU Xi, HOU Hai-liang, et al. Model tests for deformation and destruction modes of a blast-resistant bulkhead under near distance explosion[J]. Journal of Vibration and Shock, 2014, 33(11):33-48.
[6] 周红兵, 梅志远. 多层复合舰用装甲结构抗高速破片特性比较研究[J]. 材料开发与应用, 2011(4):1-6.ZHOU Hong-bing, MEI Zhi-yuan. Energy absorption mechanism of MCFS structure impacted by higy velocity FSP[J]. Development and Application of Material, 2011(4):1-6.
[7] 邢哲, 王谋华, 刘伟华, 等. 辐射接枝改性对UHMWPE纤维性能的影响[J]. 高分子材料科学与工程, 2013, 29(10):36-40.XING Zhe, WANG Mou-hua, LIU Wei-hua, et al. Effect of radiation grafting polymerization on the properties of UHMWPE fiber[J]. Polymer Materials Science and Engineering, 2013, 29(10):36-40.
[8] 石明伟. 船用耐火分隔材料及发展概况[J]. 造船技术, 2005(3):32-34.
[9] 石崇, 李宁. SiO2气凝胶复合保温材料在船舶冷库上的应用[J]. 科技创新导报, 2012(31):87-88.
[10] 谭大力, 宗培. SiC陶瓷和SiO2气凝胶组合结构耐热隔热性能研究[J]. 船舶工程, 2014, 36(3):103-106.TAN Da-li, ZONG Pei. Research on the thermal insulation property of the SiC ceramic and silicate aero-gel[J]. Ship Engineering, 2014, 36(3):103-106.
[11] ZHANG Dan, ZHANG Xue-jun. Synthesis and charac-terization of metal ophthalo cyanine dye sensitizers[J]. Chenmical Intermediate, 2011(7).
[12] 胡靖. 船舶封闭舱室火灾温度分布特性实验研究[D]. 合肥:中国科学技术大学, 2010.
[13] 郑盼, 朱锡, 李永清. SIO2气凝胶毡陶瓷棉高强聚乙烯多层复合抗弹结构隔热性能实验研究[J]. 中国舰船研究, 2016, 11(5):78-83, 99.