基于声波垂直入射下的二维解析公式,利用COMSOL软件建立椭球形空腔吸声覆盖层模型并与静压下穿孔率的理论公式进行对比,验证模型的有效性;利用所建模型分析了静压下多层材料椭球形空腔的吸声性能。结果表明:在静水压力条件下,多层材料吸声覆盖层的低频吸声性能比常压的要好,中高频方面两者相差不大;穿孔率25%下的吸声覆盖层在低频和高频的表现比穿孔率33.3%和穿孔率50%的吸声覆盖层要好,静压下穿孔率越大并不代表改善吸声覆盖层低频吸声性能越好;静压下多层材料吸声覆盖层随着压力的增大,椭球形空腔的形变量和覆盖层厚度的压缩量越大。
Based on the theory of sound wave normally impinging on the absorption layer of 2D,the mode of the multi-layered material anechoic coating embedding spheroidicity cavities is built by COMSOL.Perforation rate was compared between COMSOL and analytical solution in order to prove the validity of the model.The results indicate that the absorption performance of low-frequency of the multi-layered material anechoic coating under hydrostatic pressure is better than that of constant pressure.The absorption performance between absorption performance and constant pressure is almost same.The absorption performance of perforation rate(25%) of anechoic coating in low-frequency and high-frequency is better than those of perforation rate(33%) and perforation rate(50%).With the increasing of perforation rate,The absorption performance of low-frequency of the multi-layered material anechoic coating is not getting better.Therefore,with the pressure increasing of the multi-layered material anechoic coating in low-frequency under hydrostatic pressure,the volume of deformation and thickness of coating are getting bigger.
2017,39(3): 54-57 收稿日期:2016-02-04
DOI:10.3404/j.issn.1672-7619.2017.03.011
分类号:TB564;O429
基金项目:国家自然科学基金资助项目(51179197);国家自然科学基金青年基金资助项目(51509253)
作者简介:杨立军(1994-),男,本科,研究方向为舰船振动与噪声控制
参考文献:
[1] 孟晓宇, 肖国林, 陈虹. 国外潜艇声隐身技术现状与发展综述[J]. 舰船科学技术, 2011, 33(11):135-139. MENG Xiao-yu, XIAO Guo-lin, CHEN Hong. Review of the present situation and development of acoustic stealth technology for submarines abroad[J]. Ship Science and Technology, 2011, 33(11):135-139.
[2] 张浩, 傅欣艺, 尹铫, 等. 吸声覆盖层研究进展[J]. 应用声学, 2013, 32(4):295-304. ZHANG Hao, FU Xin-yi, YIN Yao, et al. A review of anechoic coating research[J]. Applied Acoustics, 2013, 32(4):295-304.
[3] 汤渭霖, 何世平, 范军. 含圆柱形空腔吸声覆盖层的二维理论[J]. 声学学报, 2005, 30(4):289-295. TANG Wei-lin, HE Shi-ping, FAN Jun. Two-dimensional model for acoustic absorption of viscoelastic coating containing cylindrical holes[J]. Acta Acustica, 2005, 30(4):289-295.
[4] 何世平, 汤渭霖, 何琳, 等. 变截面圆柱形空腔覆盖层吸声系数的二维近似解[J]. 船舶力学, 2006, 10(1):120-127. HE Shi-ping, TANG Wei-lin, HE Lin, et al. Analysis of acoustic characteristics of anechoic coating containing varying sectional cylindrical cavity[J]. Journal of Ship Mechanics, 2006, 10(1):120-127.
[5] EASWARAN V, MUNJAL M L. Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers:a finite element approach[J]. Journal of the Acoustical Society of America, 1993, 93(3):1308-1318.
[6] 姜闻文, 陈光冶, 朱彦. 静水压变化下橡胶结构吸声性能的计算与分析[J]. 噪声与振动控制, 2006, 26(5):55-57, 73.
[7] PANIGRAHI S N, JOG C S, MUNJAL M L. Multi-focus design of underwater noise control linings based on finite element analysis[J]. Applied Acoustics, 2008, 69(12):1141-1153.
[8] 陶猛, 卓琳凯. 静水压力下吸声覆盖层的声学性能分析[J]. 上海交通大学学报, 2011, 45(9):1340-1344.
[9] GAUNAURD G, CALLEN E, BARLOW J. Pressure effects on the dynamic effective properties of resonating perforated elastomers[J]. The Journal of the Acoustical Society of America, 1984, 76(1):173-177.
[10] 胡碰. 静水压力下声学覆盖层声学性能模块化方法研究[D]. 上海:上海交通大学, 2008.
[11] 姚熊亮, 刘文贺, 刘庆杰, 等. 水深与腔型对隔声去耦瓦吸声系数的影响[J]. 哈尔滨工程大学学报, 2007, 28(6):605-610.
[12] 罗忠, 朱锡, 林志驼, 等. 水下吸声覆盖层结构及吸声机理研究进展[J]. 舰船科学技术, 2009, 31(8):23-30. LUO Zhong, ZHU Xi, LIN Zhi-tuo, et al. A review of underwater anechoic coating structure and absorption theories[J]. Ship Science and Technology, 2009, 31(8):23-30.