本文综述海洋污损生物黏附机制与酶防污技术研究进展。海洋污损生物具有显著的生物多样性,附着过程差异显著,但其附着基础大抵相同,均通过由蛋白质、多糖、脂质等组成的黏附物质的协同作用实现牢固附着。针对污损生物黏附物质的组成及黏附机制,基于酶的生物催化作用和环境友好特性,酶基防污技术成为新型环境友好型防污材料重要发展方向之一,具有广阔的应用前景。
In this paper, the attachment mechanisms of marine fouling organisms and the progress of enzyme based antifouling technology were reviewed. Although marine fouling organisms have significant biological diversity and their attachment processes vary from each other remarkably, their attachment mechanisms are the same in some extent. Marine fouling organisms would achieve firm attachment through the synergistic effect of adhesive materials composed of proteins, polysaccharides and lipids, etc. Aiming at the components of biofouling adhesive materials and attachment mechanisms, enzyme based antifouling technology, one of the important development directions of new environment-friendly antifouling materials, has a broad application prospect due to its biocatalytic effect and environment-friendly characteristic.
2017,39(4): 1-7 收稿日期:2016-09-08
DOI:10.3404/j.issn.1672-7619.2017.04.001
分类号:TQ637
作者简介:李跃瑞(1990-),男,硕士研究生,研究方向为海洋生物污损及其防治。
参考文献:
[1] 吴兆敏, 陶乃旺. 船舶涂料有害物质现状分析[J].材料开发与应用, 2015, 30(6):75-80. WU Zhao-min, TAO Nai-wang. Analysis of harmful substances in marine coatings[J]. Development and Application of Materials, 2015, 30(6):75-80.
[2] SCHIFF K, DIEHL D, VALKIRS A. Copper emissions from antifouling paint on recreational vessels[J]. Marine Pollution Bulletin, 2004, 48(3):371-377.
[3] Köhler V, Turner N J. Artificial concurrent catalytic processes involving enzymes[J]. Chemical Communications, 2015, 51(3):450-464.
[4] JAIN A, BHOSLE N B. Biochemical composition of the marine conditioning film:implications for bacterial adhesion[J]. Biofouling, 2009, 25(1):13-19.
[5] WINDLER M, LEINWEBER K, BARTULOS C R, et al. Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium[J]. Journal of Phycology, 2015, 51(2):343-355.
[6] ZECHER K, JAGMANN N, SEEMANN P, et al. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions[J]. Journal of Microbiological Methods, 2015, 119:154-162.
[7] LASA I. Towards the identification of the common features of bacterial biofilm development[J]. International Microbiology, 2006, 9(1):21-28.
[8] 李明淦, 李燕, 张帆, 等. 固体表面改性用于防治生物污损研究进展[J]. 海洋环境科学, 2015, 34(1):156-160. LI Ming-gan, LI Yan, ZHANG Fan, et al. The progress of solid surface engineering on anti-biofouling[J]. Marine Environmental Science, 2015, 34(1):156-160.
[9] Cuadrado-Silva C T, Castellanos L, Arévalo-Ferro C, et al. Detection of quorum sensing systems of bacteria isolated from fouled marine organisms[J]. Biochemical Systematics and Ecology, 2013, 46:101-107.
[10] DE BROUWER J F C, COOKSEY K E, WIGGLESWORTH-COOKSEY B, et al. Time of flight-secondary ion mass spectrometry on isolated extracellular fractions and intact biofilms of three species of benthic diatoms[J]. Journal of Microbiological Methods, 2006, 65(3):562-572.
[11] PIERRE G, ZHAO J M, ORVAIN F, et al. Seasonal dynamics of extracellular polymeric substances (EPS) in surface sediments of a diatom-dominated intertidal mudflat (Marennes-Oléron, France)[J]. Journal of Sea Research, 2014, 92:26-35.
[12] MOLINO P J, HODSON O M, QUINN J F, et al. The quartz crystal microbalance:a new tool for the investigation of the bioadhesion of diatoms to surfaces of differing surface energies[J]. Langmuir, 2008, 24(13):6730-6737.
[13] RAMAN S, KARUNAMOORTHY L, DOBLE M, et al. Barnacle adhesion on natural and synthetic substrates:Adhesive structure and composition[J]. International Journal of Adhesion and Adhesives, 2013, 41:140-143.
[14] RAMAN S, KUMAR R. Interfacial morphology and nanomechanics of cement of the barnacle, Amphibalanus reticulatus on metallic and non-metallic substrata[J]. Biofouling, 2011, 27(6):569-577.
[15] ALMEIDA J R, VASCONCELOS V. Natural antifouling compounds:Effectiveness in preventing invertebrate settlement and adhesion[J]. Biotechnology Advances, 2015, 33(3):343-357.
[16] LIANG C, LI Y Q, HU B R, et al. Prokaryotic Expression and Functional Characterization of the 19 kDa Protein in Balanus albicostatus Cement[C]//Applied Mechanics and Materials. Trans Tech Publications, 2014, 461:445-450.
[17] BELL C, MCQUAID C D, PORRI F. Barnacle settlement on rocky shores:Substratum preference and epibiosis on mussels[J]. Journal of Experimental Marine Biology and Ecology, 2015, 473:195-201.
[18] GOHAD N V, ALDRED N, HARTSHORN C M, et al. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae.[J]. Nature Communications, 2014, 5:4414-4414.
[19] KIM H J, HWANG B H, LIM S, et al. Mussel adhesion-employed water-immiscible fluid bioadhesive for urinary fistula sealing[J]. Biomaterials, 2015, 72:104-111.
[20] LI L, ZENG H. Marine mussel adhesion and bio-inspired wet adhesives[J]. Biotribology, 2016, 5:44-51.
[21] SINGH R P, SHUKLA M K, MISHRA A, et al. Bacterial extracellular polymeric substances and their effect on settlement of zoospore of Ulva fasciata[J]. Colloids & Surfaces B Biointerfaces, 2013, 103(1):223-230.
[22] CALLOW J A, STANLEY M S, WETHERBEE R, et al. Cellular and molecular approaches to understanding primary adhesion in Enteromorpha:an overview[J]. Biofouling, 2000, 16(2-4):141-150.
[23] LEROY C, DELBARRE C, GHILLEBAERT F, et al. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium[J]. Biofouling, 2008, 24(1):11-22.
[24] LEROY C, DELBARRE C, GHILLEBAERT F, et al. Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers[J]. Journal of Applied Microbiology, 2008, 105(3):791-799.
[25] ZANAROLI G, NEGRONI A, CALISTI C, et al. Selection of commercial hydrolytic enzymes with potential antifouling activity in marine environments[J]. Enzyme and Microbial Technology, 2011, 49(6):574-579.
[26] CORDEIRO A L, Hippius C, Werner C. Immobilized enzymes affect biofilm formation[J]. Biotechnology Letters, 2011, 33(9):1897-1904.
[27] TASSO M, PETTITT M E, CORDEIRO A L, et al. Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling[J]. Biofouling, 2009, 25(6):505-516.
[28] PERES R S, ARMELIN E, MORENO MARTÍNEZ J A, et al. Transport and antifouling properties of papain-based antifouling coatings[J]. Applied Surface Science, 2015, 341:75-85.
[29] LEQUETTE Y, BOELS G, CLARISSE M, et al. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry[J]. Biofouling the Journal of Bioadhesion & Biofilm Research, 2010, 26(4):421-431.
[30] HANGLER M, BURMøLLE M, SCHNEIDER I, et al. The serine protease Esperase HPF inhibits the formation of multispecies biofilm[J]. Biofouling, 2009, 25(7):667-674.
[31] PETTITT M E, HENRY S L, CALLOW M E, et al. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta[J]. Biofouling, 2004, 20(6):299-311.
[32] SIDDIQUI M F, RZECHOWICZ M, HARVEY W, et al. Quorum sensing based membrane biofouling control for water treatment:A review[J]. Journal of Water Process Engineering, 2015, 7:112-122.
[33] MIJIN K, SANGYOUP L, HEE-DEUNG P, et al. Biofouling control by quorum sensing inhibition and its dependence on membrane surface.[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2012, 66(7):1424-1430.
[34] SCHNEIDER I, ALLERMANN K. Antifouling composition comprising an enzyme in the absence of its substrate:U.S. Patent 20, 050, 147, 579[P]. 2005-7-7.
[35] SCHASFOORT A, EVERSDIJK J, ALLERMANN K, et al. Self-polishing antifouling coating compositions comprising an enzyme:U.S. Patent Application 11/571, 158[P]. 2005-6-29.
[36] KRISTENSEN J B, OLSEN S M, LAURSEN B S, et al. Enzymatic generation of hydrogen peroxide shows promising antifouling effect[J]. Biofouling, 2010, 26(2):141-153.
[37] OLSEN S M, KRISTENSEN J B. Antifouling effect of hydrogen peroxide release from enzymatic marine coatings:Exposure testing under equatorial and Mediterranean conditions[J]. Progress in Organic Coatings, 2010, 68(3):248-257.
[38] WANG H, JIANG Y, ZHOU L, et al. Bienzyme system immobilized in biomimetic silica for application in antifouling coatings[J]. Chinese Journal of Chemical Engineering, 2015, 23(8):1384-1388.
[39] DICOSIMO R, MCAULIFFE J, POULOSE A J, et al. Industrial use of immobilized enzymes[J]. Chemical Society Reviews, 2013, 42(15):6437-6474.
[40] SHELDON R A, VAN PELT S. Enzyme immobilisation in biocatalysis:why, what and how[J]. Chemical Society Reviews, 2013, 42(15):6223-6235.
[41] CARLSSON N, GUSTAFSSON H, THöRN C, et al. Enzymes immobilized in mesoporous silica:A physical-chemical perspective[J]. Advances in Colloid & Interface Science, 2014, 205(12):339-360.
[42] JEGANNATHAN K R, ABANG S, PONCELET D, et al. Production of biodiesel using immobilized lipase——a critical review[J]. Critical Reviews in Biotechnology, 2008, 28(4):253-264.
[43] KLOTZBACH T L, WATT M, ANSARI Y, et al. Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion® polymers[J]. Journal of Membrane Science, 2008, 311(1):81-88.
[44] SHEN Q, YANY R, HUA X, et al. Gelatin-templated biomimetic calcification for β-galactosidase immobilization[J]. Process Biochemistry, 2011, 46(8):1565-1571.
[45] SHELDON R A. Cross-linked enzyme aggregates (CLEAs):stable and recyclable biocatalysts[J]. Biochemical Society Transactions, 2007, 35(6):1583-1587.
[46] ALAGÖZ D, ÇELIK A, YILDIRIM D, et al. Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports[J]. Journal of Molecular Catalysis B:Enzymatic, 2016, 130:40-47.
[47] DANDAVATE V, KEHARIA H, MADAMWAR D. Ethyl isovalerate synthesis using Candida rugosa, lipase immobilized on silica nanoparticles prepared in nonionic reverse micelles[J]. Process Biochemistry, 2009, 44(3):349-352.
[48] MA H Z, YU X W, SONG C, et al. Immobilization of Candida Antarctica lipase B on epoxy modified silica by sol-gel process[J]. Journal of Molecular Catalysis B Enzymatic, 2016, 127:76-81.
[49] YILMAZ E, CAN K, SEZGIN M, et al. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester[J]. Bioresource Technology, 2011, 102(2):499-506.
[50] VENDITTI I, PALOCCI C, CHRONOPOULOU L, et al. Candida rugosa, lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts:Activity and stability investigations[J]. Colloids & Surfaces B Biointerfaces, 2015, 131:93-101.
[51] YUCE-DURSUN B, CIGIL A B, DONGEZ D, et al. Preparation and characterization of sol-gel hybrid coating films for covalent immobilization of lipase enzyme[J]. Journal of Molecular Catalysis B Enzymatic, 2016, 127:18-25.
[52] BALISTRERI N, GABORIAU D, JOLIVALT C, et al. Covalent immobilization of glucose oxidase on mesocellular silica foams:Characterization and stability towards temperature and organic solvents[J]. Journal of Molecular Catalysis B Enzymatic, 2016, 127:26-33.
[53] HUIJS F M, KLIJNSTRA J W, VAN Z J. Antifouling coating comprising a polymer with functional groups bonded to an enzyme:EP, EP1661955[P]. 2006.
[54] BONAVENTURA C, BONAVENTURA J, Hooper I R. Antifouling methods using enzyme coatings:US, US5998200[P]. 1999.