为探讨破片高速侵彻液舱后的剩余特性,通过弹道试验,并结合有限元分析软件Ansys/Ls-Dyna,比较破片侵彻垂直和倾斜液舱后的瞬时余速和运动轨迹。试验结果表明:破片穿透液舱前板初期,会产生空泡和射流,空泡大小和射流强度与破片入水初速有关,而空泡形状和射流方向则受液舱的倾斜角度影响;破片穿透液舱前板后,在水中的运动轨迹会发生偏转,偏转方向与破片入水初速有关。
To explore the residual characteristics of protecting liquid cabin penetrated by high velocity fragments,experiments were carried out, and combine Ansys/Ls-Dyna, comparisons between vertical and inclined liquid cabins penetrated by fragments in terms of instantaneous fragment velocities and moving trajectories result show that, in the earlier stage after the fragment perforating the protecting liquid cabin foreplate, cavities and jets are produced. The cavity size and the jet intensity are both related to entry-water initial velocities of fragments, whereas both the cavity shape and the jet direction are affected by the inclined angle of the protecting liquid cabin. After the perforation of protecting liquid cabin foreplate, the moving trajectories of fragments will deflect, and the deflection direction is related to entry-water initial velocities of fragments.
2017,39(4): 49-53 收稿日期:2016-05-18
DOI:10.3404/j.issn.1672-7619.2017.04.010
分类号:O344.7
基金项目:国家自然科学基金资助项目(51409253)
作者简介:张元豪(1992-),男,硕士研究生,主要研究方向为舰艇防护。
参考文献:
[1] MCMILLEN J H. Shock wave pressures in water produced by impact of small spheres[J]. Physical Review, 1945, 68(9-10):198-209.
[2] MCMILLEN J H, HARVEY EN. A spark shadowgraphic study of body waves in water[J]. Journal of Applied Physics, 1946, 17(7):541-555.
[3] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid filled structures due to high velocity fragment impact[J]. Int J Impact Eng, 2003, 29(1-10):723-733.
[4] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles[J]. Int J Impact Eng, 2009, 36(6):821-829.
[5] DISIMILE PJ, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank[J]. Int J Impact Eng, 2011, 38(2-3):61-72.
[6] DELETOMBE E, FABIS J, DUPAS J, MORTIER J M. Experimental analysis of 7.62mm hydrodynamic ram in containers[J]. Journal of Fluids and Structures, 2013, 37:1-21.
[7] 唐廷, 朱锡, 侯海量, 等. 高速破片在防雷舱结构中引起的冲击荷载的理论研究[J]. 振动与冲击, 2013, 32(6):132-136, 148. TANG Ting, ZHU Xi, HOU Hai-liang, et al. Shock loading induced by high speed fragment in cabin near shipboard[J]. Journal of Vibration and Shock, 2013, 32(6):132-136, 148.
[8] 孔祥韶, 吴卫国, 刘芳, 等. 舰船舷侧防护液舱对爆炸破片的防御作用研究[J]. 船舶力学, 2014, 18(8):996-1004. KONG Xiang-shao, WU Wei-guo, LIU Fang, et al. Research on protective effect of guarding fluid cabin under attacking by explosion fragments[J]. Journal of Ship Mechanics, 2014, 18(8):996-1004.
[9] 沈晓乐, 朱锡, 侯海量, 等. 高速破片入水镦粗变形及侵彻特性有限元分析[J]. 舰船科学技术, 2012, 34(7):25-29. SHEN Xiao-le, ZHU Xi, HOU Hai-liang, et al. Finite element analysis of underwater high velocity fragment mushrooming and penetration properties[J]. Ship Science and Technology, 2012, 34(7):25-29.
[10] 李典, 朱锡, 侯海量, 等. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J]. 爆炸与冲击, 2016, 36(1):1-8. LI Dian, ZHU Xi, HOU Hai-liang, et al. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1):1-8.
[11] 张振华, 朱锡, 等. 水面舰艇舷侧防雷舱结构水下抗爆防护机理研究[J]. 船舶力学, 2006, 10(1):113-119. ZHANG Zhenhua, ZHU Xi, et al. Theoretical research on the defendence of cabin near shipboard of surface warship subjected to underwater contact explosion[J]. Journal of Ship Mechanics, 2006, 10(1):113-119.
[12] 沈晓乐, 朱锡, 侯海量. 高速破片侵彻防护液舱试验研究[J]. 中国舰船研究, 2011, 6(3):12-15. SHEN Xiao-le, ZHU Xi, HOU Hai-liang. Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J]. Chinese Journal of Ship Research, 2011, 6(3):12-15.
[13] 徐双喜, 吴卫国, 李晓彬. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击, 2010, 30(4):395-400. XU Shuang-xi, WU Wei-guo, LI Xiao-bin. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J]. Explosion and Shock Waves, 2010, 30(4):395-400.