随着世界上海洋平台的增多,船舶与海洋平台的碰撞事故也随之变多,碰撞事故往往产生巨大损失。为了研究其碰撞规律,本文基于有限元软件Ansys/Ls-Dyna,研究分析不同速度下供应船尾部与半潜式海洋平台的碰撞,碰撞中的流体采用附加质量法处理。为确保计算结果精度,对碰撞的局部区域进行网格细化。计算结果表明,正碰时平台内部结构单元首先发生破坏(内部结构指水平强框处单元),外板失效所需能量比内部结构大;当撞击速度小于破坏速度时,单元没有破坏,但当船回弹时,外板上的板单元产生振动,应力和能量产生短时间波动。
Due to the increase of the ocean platforms, the frequency of collision between ship and platforms becomes more and more high, causing huge losses. In order to study the law of collision between ship and platform, this paper, based on the finite element software Ansys/LS-DYNA, studying on the collision between ocean platform and stern of ship in different speed, fluid in collision is treated in the way of additional mass. Local area of collision is conducted mesh refinement in sure of the accuracy of computation. The result show that the internal structural unit of the platform is destroyed first when frontal collision happens, outer panel need more energy than internal structure when unit fail. When impact velocity is less than failure velocity, unit is not destroyed. However, when ship springs back, unit of outer panel will vibration, stress and energy will have short-time fluctuate.
2017,39(4): 69-73 收稿日期:2016-07-30
DOI:10.3404/j.issn.1672-7619.2017.04.014
分类号:U661.43
作者简介:王林(1963-),男,教授,研究方向为船舶与海洋工程结构力学。
参考文献:
[1] 龚顺风, 金伟良, 王全增. 海上固定平台受损构件的修理与评估[J]. 中国海洋平台, 2001, 16(2):37-41.
[2] JIN Wei-liang, GONG Shun-feng, SONG Jian. Preliminary report of damage assessment analysis for some offshore Jacket platform[R]. Institute of structural Engineering, Zhejiang University, 2001(12).
[3] 李润培, 陈伟刚, 顾永宁. 船舶与海洋平台碰撞的动力响应分析[J]. 上海交通大学学报, 1996, 30(3):40-48.
[4] 胡永利, 林一, 谭美. 半潜式平台遭遇碰撞的结构响应分析[J]. 船舶与海洋工程, 2012, 88(1):46-55.
[5] LIN Shi-gen, WEI Shen. Hybrid control of a parallel platform based on pneumatic artificial muscles combining sliding mode controller and adaptive fuzzy CMAC[J]. Control Engineering Practice, 2013, 21(1):76-86.
[6] MORALES C, GARDIN S, SCHNYDER J, et al. Berriasian and early valanginian environmental change along a transect from the jura platform to the vocontian basin[J]. Earthquake Engineering. 2013, 60(1):36-63.
[7] 孙彦杰, 李良碧, 尹群. 碰撞、爆炸灾害下海洋平台风险评估研究初探[J]. 中国海洋平台, 2007, 22(5):38-47.
[8] 陈铁云, 朱正宏. 海洋平台碰撞和损伤分析的进展[J]. 力学进展, 1989, 19(4):454-463.
[9] HYSING T. Damage and penetration analysis-safety of passenger ROR vessels[J]. DNV Report, 1995:95-0419, Norway.
[10] JOAO G, LIVERIA D O. The behavior of steel offshore structures under accidental collision[C]//Proceeding of 13th annual offshore technology conference. OTC4136, 1981:187-198.
[11] 金伟良, 龚顺风, 等, 大型船舶碰撞引起的海洋导管架平台结构损伤分析. 海洋工程, 2003, 21(2):20-25.
[12] 吴卫国, 朱孟巍. 船舶与海洋平台碰撞的动力特性研究. 武汉理工大学论文, 2006(4):19-24, 28-36.
[13] BrOWN A, TECH V, TIKKA K, et al.Structrual design and response in collision and grouding[C]//The Society of Naval Architects and Marine Engineers, 2000 Annual Meeting Preprings, 2000.
[14] KIM J Y, YU E, KIM D Y, et al. Long term monitoring of wind induced responses of a large span roof structure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(2011):963-995.
[15] 李上明. 冲击波作用下水下结构载荷计算方法[J]. 工程力学, 2014, 31(12):11-18.
[16] 秦立成. 海洋导管架平台碰撞动力分析[J]. 中国海上油气, 2008, 20(6):416-422.
[17] 王林, 周国宝, 米旭峰. 基于整体海洋平台模型的下落物体撞击数值仿真[J]. 解放军理工大学学报(自然科学版), 2008, 9(6):687-694.
[18] CALAUTIT J K, O'CONNOR D, HUGHES B R. Determining the optimum spacing and arrangement for commercial wind towers for ventilation performance[J]. Building And Environment, 2014, 82(2014):274-287.
[19] 刘雄, 梁湿. 风力机翼型动态失速气动特性仿真[J]. 工程力学, 2015, 32(3):203-211.
[20] S Bing-bing, S Xiao-ying, YUE W. Multi-object optimization of membrane structure based on pareto genetic algorithm[J]. Journal of Harbin Institute of Technology, 2010, 17(5):622-630.
[21] 刘平, 王林. LS-DYNA软件对某半潜式海洋平台发生碰撞的分析[J]. 解放军理工大学学报(自然科学版), 2015, 10(16):465-470.