超高分子量聚乙烯纤维增强塑料(UFRP)层合板具有良好的抗侵彻性能,但受温度影响明显,其热损伤的临界温度仅为147℃。为了避免火灾产生的高温使UFRP层合板失去抗弹性能,设计了以船用钢为前/后面板,SiO2气凝胶毡为隔热层,UFRP层合板为抗弹层的复合抗弹结构。在A60耐火等级标准条件下,对复合抗弹结构的有限元模型进行瞬态热分析,探索了复合抗弹结构内部的温度分布与SiO2气凝胶毡隔温层厚度的关系。根据有限元仿真结果,近一步对SiO2气凝胶毡隔热层厚度为20 mm的复合抗弹结构单元开展耐火试验。结果表明:SiO2气凝胶毡具有良好的隔热性能,在A60耐火等级标准条件下,保持复合抗弹结构中UFRP层合板抗弹性能完好所需的SiO2气凝胶毡隔热层厚度至少为20 mm。
Ultra-high molecular weight polyethylene fiber reinforced plastic (UFRP) laminates has good penetration-resistance, however, the penetration-resistance of UFRP laminates is sensitive to temperature and the critical temperature is 147℃. A sandwich armor structure was designed to protect the antiknock performance of UFRP laminates under the impact of conflagration, and steel is front/rear panel, Silicate Aero-gel is thermal barrier, UFRP laminates is armor for the structure. In order to explore the relationship between temperature distribution of composite armor structure and thickness of silicate aero-gel, a transient thermal analysis on the finite element model of composite armor structure was carried out under the condition of A60 standard. According to the results of finite element simulation, a fire resistance test for composite armor structure also carried out, and the thickness of heat insulation layer is 20 mm. Finally,the results show that silicate aero-gel has good heat insulation performance, and in order to maintain the antiknock performance of UFRP laminates under the condition of A60 standard, the thickness of heat insulation layer in sandwich armor structure should set at least 20 mm.
2017,39(5): 42-46,70 收稿日期:2016-06-20
DOI:10.3404/j.issn.1672-7619.2017.05.009
分类号:U668.1
基金项目:国家自然科学基金资助项目(51179200)
作者简介:何翔(1993-),男,硕士研究生。研究方向为船用复合材料
参考文献:
[1] 王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究[J]. 爆炸与冲击, 2009, 29(1):29-34. WANG Xiao-qiang, ZHU Xi, MEI Zhi-yuan, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates[J]. Explosion and Shock Waves, 2009, 29(1):29-34.
[2] 王晓强, 朱锡, 梅志远. 高速钢质破片侵彻高强聚乙烯纤维增强塑料层合板试验研究[J]. 兵工学报, 2009, 30(12):1574-1578. WANG Xiao-qiang, ZHU Xi, MEI Zhi-yuan. An experimental research on high velocity steel fragments perforating UHMWPE FRP laminates[J]. Acta Armamentarii, 2009, 30(12):1574-1578.
[3] 张典堂, 陈利, 孙颖, 等. UHMWPE/LLDPE复合材料层板低速冲击及冲击后压缩性能实验研究[J]. 复合材料学报, 2013, 30:107-111. ZHANG Dian-tang, CHEN Li, SUN Ying, et al. Low velocity impact and residual compressive strength impact properties of UHMWPE/LLDPE composite laminates[J]. Acta Material Composite Sinica, 2013, 30:107-111.
[4] 蔡军锋, 傅孝忠, 易建政. 超高分子量聚乙烯-聚氨酯泡沫复合材料的抗爆实验与数值模拟[J]. 高分子材料科学与工程, 2013, 29(11):79-83. CAI Jun-feng, FU Xiao-zhong, YI Jian-zheng. Anti-explosion experiment and numerical simulation of UHMWPE-PUF composite[J]. Polymer Materials Science and Engineering, 2013, 29(11):79-83.
[5] 陈长海, 徐文献, 朱锡, 等. 超高分子量聚乙烯纤维增强层合厚板抗高速钝头弹侵彻的理论模型[J]. 中国舰船研究, 2015, 10(3):63-69. CHEN Chang-hai, XU Wen-xian, ZHU Xi, et al. Theoretical model for thick ultra-high molecular weight polyethylene fiberreinforced laminates penetrated by high-velocity blunt-nosed projectiles[J]. Chinese Journal of Ship Research, 2015, 10(3):63-69.
[6] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合抗弹结构的毁伤特性[J]. 爆炸与冲击, 2015, 10(3):63-69. HOU Hai-liang, ZHANG Cheng-liang, LI Mao, et al. Damage characteristics of sandwich armor structure under the impact of shock and high-velocity fragments[J]. Explosion and Shock Waves, 2015, 10(3):63-69.
[7] 张成亮, 朱锡, 侯海量, 等. 近距空爆下复合抗爆舱壁变形破坏模式试验研究[J]. 振动与冲击, 2014, 33(11):33-48. ZHANG Cheng-liang, ZHU Xi, HOU Hai-liang, et al. Model tests for deformation and destruction modes of a blast-resistant bulkhead under near distance explosion[J]. Journal of Vibration and Shock, 2014, 33(11):33-48.
[8] 邢哲, 王谋华, 刘伟华, 等. 辐射接枝改性对UHMWPE纤维性能的影响[J]. 高分子材料科学与工程, 2013, 29(10):36-40. XING Zhe, WANG Mou-hua, LIU Wei-hua, et al. Effect of radiation grafting polymerization on the properties of UHMWPE fiber[J]. Polymer Materials Science and Engineering, 2013, 29(10):36-40.
[9] 王俊儒, 申奕. 多层保温层的合理安排[J]. 天津化工, 2001(2):29-30.
[10] 谭大力, 宗培. SiC陶瓷和SiO2气凝胶组合结构耐热隔热性能研究[J]. 船舶工程, 2014, 36(3):103-106. TAN Da-li, ZONG Pei. Research on the thermal insulation property of the SiC ceramic and silicate aero-gel[J]. Ship Engineering, 2014, 36(3):103-106.
[11] 王晓婷, 张宏波, 杨海龙, 等. 耐高温隔热材料组合结构模拟研究与试验验证[J]. 宇航材料工艺, 2014(1):92-96. WANG Xiao-ting, ZHANG Hong-bo, YANG Hai-long, et al. High temperature resistant heat insulating material simulation and experimental verification[J]. Aero-space Materials & Technology, 2014(1):92-96.
[12] 石明伟, 胡津津. 美国海军舰船的耐火分隔技术发展[J]. 中国舰船研究, 2008, 3(5):77-80. SHI Ming-wei, HU Jin-jin. Development of fire protection technology in U. S. naval ships[J]. Chinese Journal of Ship Research, 2008, 3(5):77-80.